Back to Journals » International Journal of Nanomedicine » Volume 12

Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells

Authors Yuan YG, Gurunathan S

Received 20 October 2016

Accepted for publication 17 December 2016

Published 5 September 2017 Volume 2017:12 Pages 6537—6558

DOI https://doi.org/10.2147/IJN.S125281

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Alexander Kharlamov

Peer reviewer comments 5

Editor who approved publication: Prof. Dr. Thomas J Webster

Yu-Guo Yuan,1,2 Sangiliyandi Gurunathan3

1College of Veterinary Medicine/Animal Science and Technology/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; 2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China; 3Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea

Background: Cisplatin (Cis) is a widely used chemotherapeutic drug for treating a variety of cancers, due to its ability to induce cell death in cancer cells significantly. Recently, graphene and its modified nanocomposites have gained much interest in cancer therapy, due to their unique physicochemical properties. The objective of this study was to investigate the combination effect of Cis and a reduced graphene oxide–silver nanoparticle nanocomposite (rGO-AgNPs) in human cervical cancer (HeLa) cells.
Materials and methods: We synthesized AgNPs, rGO, and rGO-AgNP nanocomposites using C-phycocyanin. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer properties of the Cis, rGO-AgNPs, and combination of Cis and rGO-AgNPs were evaluated using a series of cellular assays, such as cell viability, cell proliferation, LDH leakage, reactive oxygen species generation, and cellular levels of oxidative and antioxidative stress markers such as malondialdehyde, glutathione, SOD, and CAT. The expression of proapoptotic, antiapoptotic, and autophagy genes were measured using real-time reverse-transcription polymerase chain reaction.
Results: The synthesized AgNPs were well dispersed, homogeneous, and spherical, with an average size of 10 nm and uniformly distributed on graphene sheets. Cis, GO, rGO, AgNPs, and rGO-AgNPs inhibited cell viability in a dose-dependent manner. The combination of Cis and rGO-AgNPs showed significant effects on cell proliferation, cytotoxicity, and apoptosis. The combination of Cis and rGO-AgNPs had more pronounced effects on the expression of apoptotic and autophagy genes, and also significantly induced the accumulation of autophagosomes and autophagolysosomes, which was associated with the generation of reactive oxygen species.
Conclusion: Our findings substantiated rGO-AgNPs strongly potentiating Cis-induced cytotoxicity, apoptosis, and autophagy in HeLa cells, and hence rGO-AgNPs could be potentially applied to cervical cancer treatment as a powerful synergistic agent with Cis or any other chemotherapeutic agents.

Keywords:
cisplatin, graphene oxide–silver nanoparticles nanocomposites, oxidative stress, cell viability, apoptosis, autophagy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3)

Zhang XF, Huang FH, Zhang GL, Bai DP, Massimo DF, Huang YF, Gurunathan S

International Journal of Nanomedicine 2017, 12:7551-7575

Published Date: 13 October 2017

Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells

Bai D, Zhang X, Zhang G, Huang Y, Gurunathan S

International Journal of Nanomedicine 2017, 12:6521-6535

Published Date: 5 September 2017

Silver nanoparticles cause complications in pregnant mice

Zhang XF, Park JH, Choi YJ, Kang MH, Gurunathan S, Kim JH

International Journal of Nanomedicine 2015, 10:7057-7071

Published Date: 13 November 2015

Effects of silver nanoparticles on neonatal testis development in mice

Zhang XF, Gurunathan S, Kim JH,

International Journal of Nanomedicine 2015, 10:6243-6256

Published Date: 5 October 2015

Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, Kim JH

International Journal of Nanomedicine 2015, 10:6257-6276

Published Date: 5 October 2015

Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

Zhang XF, Choi YJ, Han JW, Kim ES, Park JH, Gurunathan S, Kim JH

International Journal of Nanomedicine 2015, 10:1335-1357

Published Date: 16 February 2015

An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231)

Gurunathan S, Han J, Park JH, Kim JH

International Journal of Nanomedicine 2014, 9:1783-1797

Published Date: 8 April 2014

Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene

Gurunathan S, Han JW, Park JH, Eppakayala V, Kim JH

International Journal of Nanomedicine 2014, 9:363-377

Published Date: 7 January 2014

Green chemistry approach for the synthesis of biocompatible graphene

Gurunathan S, Han JW, Kim JH

International Journal of Nanomedicine 2013, 8:2719-2732

Published Date: 31 July 2013

Green synthesis of graphene and its cytotoxic effects in human breast cancer cells

Gurunathan S, Han JW, Eppakayala V, Kim JH

International Journal of Nanomedicine 2013, 8:1015-1027

Published Date: 10 March 2013

Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH

International Journal of Nanomedicine 2012, 7:5901-5914

Published Date: 30 November 2012

Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model

Muthu Irulappan Sriram, Selvaraj Barath Mani Kanth, Kalimuthu Kalishwaralal, et al

International Journal of Nanomedicine 2010, 5:753-762

Published Date: 24 September 2010