Back to Journals » Drug Design, Development and Therapy » Volume 13

Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer

Authors Zhang X, He Z, Xiang L, Li L, Zhang H, Lin F, Cao H

Received 16 December 2018

Accepted for publication 5 March 2019

Published 29 April 2019 Volume 2019:13 Pages 1357—1372


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Manfred Ogris

Xiangyu Zhang,1,* Zelai He,2,* Longquan Xiang,1 Liang Li,1 Haiyan Zhang,1 Fanzhong Lin,1 Hongying Cao1

1Department of Pathology, Jining First People’s Hospital, Jining Medical University, Jining 272000, People’s Republic of China; 2Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu 233004, People’s Republic of China
 *These authors contributed equally to this work

Background: Castration-resistant prostate cancer (CRPC) accounts for the majority of prostate cancer deaths, and patients with CRPC are prone to developing drug resistance. Therefore, there is a need to develop effective therapeutics to treat CRPC, especially drug-resistant CRPC. Although various nanoparticles have been developed for drug or gene delivery and control release, approaches to reproducibly formulate the optimal treatment with nanoparticles that could effectively target CRPC and bone metastasis remain suboptimal. Recently, codelivery of a chemotherapeutic agent and a small interfering RNA (siRNA) has become a promising strategy for the treatment of drug-resistant prostate cancer.
Methods: In a previous study, we prepared a novel RGD-PEG-DSPE/CaP nanoparticle as an effective and biocompatible drug and gene delivery system. In this study, we further modify the nanoparticle to obtain the LCP-RGD nanoparticle, which contains a calcium phosphate (CaP) core, dioleoyl phosphatidic acid (DOPA) and RGD modified poly(ethylene glycol)-conjugated distearoyl phosphatidylethanolamine (RGD-PEG-DSPE). This drug delivery system was used for codelivery of GRP78 siRNA and docetaxel (DTXL) for the treatment of the PC-3 CRPC.
Results: The nanoparticles contain the CaP core, which can effectively compress the negatively charged siRNA, while the DOPA and RGD-PEG-DSPE component can effectively carry DTXL. The arginine-glycine-aspartic acid (RGD) segment can target the prostate cancer site, as the cancer site is neovascularized. This novel nanoparticle has good stability, excellent biocompatibility, high drug and siRNA loading capacity, and an in vitro sustainable release profile.
Conclusion: Codelivery of DTXL and GRP78 siRNA has enhanced in vitro and in vivo anti-prostate cancer effects which are much greater than using free DTXL and free GRP78 siRNA together. Our study also indicated that codelivery of DTXL and GRP78 siRNA have an in vitro and in vivo combinational anti-prostate cancer effect and also could effectively sensitize the cell-killing effect of DTXL; this method may be especially suitable for drug-resistant CRPC treatment.

Keywords: codelivery, docetaxel, RANK, siRNA, nanoparticles

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]