Back to Journals » International Journal of Nanomedicine » Volume 12

Co-self-assembly of cationic microparticles to deliver pEGFP-ZNF580 for promoting the transfection and migration of endothelial cells

Authors Feng Y, Guo M, Liu W, Hao X, Lu W, Ren X, Shi C, Zhang W

Received 2 March 2016

Accepted for publication 4 September 2016

Published 20 December 2016 Volume 2017:12 Pages 137—149

DOI https://doi.org/10.2147/IJN.S107593

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Lei Yang


Yakai Feng,1–5 Mengyang Guo,1 Wen Liu,1 Xuefang Hao,1 Wei Lu,1 Xiangkui Ren,1,2 Changcan Shi,4,5 Wencheng Zhang6

1Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, 2Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, 3Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, 4Institute of Biomaterials and Engineering, Wenzhou Medical University, 5Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS, Wenzhou, 6Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin, People’s Republic of China

Abstract:
The gene transfection efficiency of polyethylenimine (PEI) varies with its molecular weight. Usually, high molecular weight of PEI means high gene transfection, as well as high cytotoxicity in gene delivery in vivo. In order to enhance the transfection efficiency and reduce the cytotoxicity of PEI-based gene carriers, a novel cationic gene carrier was developed by co-self-assembly of cationic copolymers. First, a star-shaped copolymer poly(3(S)-methyl-morpholine-2,5-dione-co-lactide) (P(MMD-co-LA)) was synthesized using D-sorbitol as an initiator, and the cationic copolymer (P(MMD-co-LA)-g-PEI) was obtained after grafting low-molecular weight PEI. Then, by co-self-assembly of this cationic copolymer and a diblock copolymer methoxy-poly(ethylene glycol) (mPEG)-b-P(MMD-co-LA), microparticles (MPs) were formed. The core of MPs consisted of a biodegradable block of P(MMD-co-LA), and the shell was formed by mPEG and PEI blocks. Finally, after condensation of pEGFP-ZNF580 by these MPs, the plasmids were protected from enzymatic hydrolysis effectively. The result indicated that pEGFP-ZNF580-loaded MP complexes were suitable for cellular uptake and gene transfection. When the mass ratio of mPEG-b-P(MMD-co-LA) to P(MMD-co-LA)-g-PEI reached 3/1, the cytotoxicity of the complexes was very low at low concentration (20 µg mL-1). Additionally, pEGFP-ZNF580 could be transported into endothelial cells (ECs) effectively via the complexes of MPs/pEGFP-ZNF580. Wound-healing assay showed that the transfected ECs recovered in 24 h. Cationic MPs designed in the present study could be used as an applicable gene carrier for the endothelialization of artificial blood vessels.

Keywords: star-shaped copolymer, microparticles, gene carrier, endothelial cells, transfection, migration

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]