Back to Journals » Infection and Drug Resistance » Volume 7

Clinical utility of telavancin for treatment of hospital-acquired pneumonia: focus on non-ventilator-associated pneumonia

Authors Rubinstein E, Stryjewski ME, Barriere SL

Received 15 February 2014

Accepted for publication 3 April 2014

Published 20 May 2014 Volume 2014:7 Pages 129—135

DOI https://doi.org/10.2147/IDR.S25930

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Ethan Rubinstein,1 Martin E Stryjewski,2 Steven L Barriere3
1University of Manitoba, Winnipeg, MB, Canada; 2Department of Medicine, Section of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina; 3Theravance, Inc., South San Francisco, CA, USA

Background: Hospital-acquired pneumonia (HAP) is the most common health care-associated infection contributing to death. Studies have indicated that there may be differences in the causative pathogens and outcomes of ventilator-associated pneumonia (VAP) and non-ventilator-associated pneumonia (NV-HAP). However, with limited NV-HAP-specific data available, treatment is generally based on data from studies of VAP. The Phase 3 Assessment of Telavancin for Treatment of Hospital-Acquired Pneumonia (ATTAIN) studies were two double-blind randomized controlled trials that demonstrated the non-inferiority of telavancin to vancomycin for treatment of Gram-positive HAP. We conducted a post hoc subgroup analysis of patients enrolled in the ATTAIN studies who had NV-HAP.
Methods: Data from the two ATTAIN studies were pooled, and patients with NV-HAP were analyzed. The all-treated (AT) population consisted of all randomized patients who received ≥1 dose of study medication, and the clinically evaluable (CE) population consisted of AT patients who were protocol-adherent or who died on or after study day 3, where death was attributable to the HAP episode under study. The primary endpoint was clinical response (cure, failure, or indeterminate) at the follow-up/test of cure visit, conducted 7–14 days after the end of therapy.
Results: A total of 1,076 patients (71.6% of overall ATTAIN AT population) had NV-HAP (533 and 543 patients in the telavancin and vancomycin treatment groups, respectively). Clinical cure rates in the CE population were similar for patients with NV-HAP treated with telavancin and vancomycin (83.1% [201/242] and 84.1% [233/277], respectively). In patients with methicillin-resistant Staphylococcus aureus isolated at baseline, cure rates in the CE population were 74.8% (77/103) for telavancin and 79.3% (96/121) for vancomycin. The incidence of adverse events, serious adverse events, and deaths in patients with NV-HAP was similar whether patients received telavancin or vancomycin.
Conclusion: This post hoc subgroup analysis of the ATTAIN studies demonstrated similar cure rates for telavancin and vancomycin for treatment of NV-HAP.

Keywords: nosocomial pneumonia, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010