Back to Journals » International Journal of Nanomedicine » Volume 14

Chitosan Nanoparticles Strengthen Vγ9Vδ2 T-Cell Cytotoxicity Through Upregulation Of Killing Molecules And Cytoskeleton Polarization

Authors Lin L, He J, Li J, Xu Y, Li J, Wu Y

Received 19 April 2019

Accepted for publication 30 September 2019

Published 29 November 2019 Volume 2019:14 Pages 9325—9336

DOI https://doi.org/10.2147/IJN.S212898

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Linlin Sun


Li Lin,1,2,* Junyi He,2,* Jiawei Li,2 Yan Xu,2 Jingxia Li,2 Yangzhe Wu1,2

1Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, People’s Republic of China; 2The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Yangzhe Wu
Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, People’s Republic of China
Tel +86 020 8522 2787
Email tyzwu@jnu.edu.cn

Background: During the past few years, immune cell therapy for malignant cancer has benefited a considerable amount of patients worldwide. As one of several promising candidates for immunotherapy, Vγ9Vδ2 γδ T cells have many unique biological advantages, such as non-MHC restriction and have been noted as the earliest source of IFN-γ. However, potentiating anti-tumor functions of γδ T cells has become of particular interest to researchers studying γδ T cell applications.
Purpose: In this study, we proposed a nanotechnology-based methodology for strengthening γδ T cell functions.
Methods: As a type of reliable, biocompatible material, chitosan nanoparticles (CSNPs) were used to enhance anti-tumor immunity of γδ T cells.
Results: First, we found that the size of prepared CSNPs distributed 50 to 100 nm, and that CSNPs had optimal immunocompatibility. Then, we observed that CSNPs could induce α-tubulin cytoskeleton polarization and rearrangement, correlating with a higher killing ability of γδ T cells. Furthermore, we revealed that CSNPs could enhance Vγ9Vδ2 T cell anti-tumor functions by upregulating killing of related receptors, including NKG2D, CD56, FasL, and perforin secretion.
Conclusion: Our work provided evidence of application for CSNPs based bio-carrier in immunotherapy. More importantly, we proposed a new strategy for enhancing γδ T cell anti-tumor activity using nanobiomaterial, which could benefit future clinical applications of γδ T cells.

Keywords: chitosan nanoparticles, Vγ9Vδ2 γδ T cell, cytotoxicity, anti-tumor activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]