Back to Browse Journals » International Journal of Nanomedicine » Volume 4

Characterization of complexation of poly (N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate) thermoresponsive cationic nanogels with salmon sperm DNA

Authors Jim Moselhy, Tasnim Vira, Fei-Fei Liu, et al

Published 24 August 2009 Volume 2009:4 Pages 153—164

DOI https://doi.org/10.2147/IJN.S6585

Review by Single-blind

Peer reviewer comments 2

Jim Moselhy1, Tasnim Vira1, Fei-Fei Liu2, Xiao Yu Wu1

1Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; 2Ontario Cancer Institute, Toronto, ON, Canada

Abstract: Thermoresponsive cationic nanogel (TCNG) networks based on N-isopropylacrylamide (NIPAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and quaternary alkyl ammonium halide salts of DMAEMA (DMAEMAQ) were synthesized by dispersion polymerization technique. The thermoresponsive properties of TCNGs and TCNG-salmon sperm DNA (sasDNA) polyplexes were characterized in aqueous media of various pH and ionic strength. P[NIPAM] and P[NIPAM/DMAEMA] TCNGs exhibited sharp volume phase transition (VPT) in water at critical temperatures (Tc) of 32 °C and 36 °C, respectively. Quaternized P[NIPAM/DMAEMAQ] TCNGs did not undergo sharp VPT up to 50 °C. The VPT of uncomplexed TCNGs were sensitive to the ionic composition and ionic strength of salts in solution, but were insensitive to pH in the range 5.0 to 7.4. The VPT of P[NIPAM/DMAEMAQ]/sasDNA diminished in magnitude with increasing Wp/Wd suggesting greater compaction of the polyplexes. The distinct phase-transition properties of P[NIPAM/DMAEMA]/sasDNA and P[NIPAM/DMAEMAQ]/sasDNA polyplexes were attributed to the condensing capability of polycations and to differences in the spatial distribution of structural charges in quaternized and nonquaternized networks. The findings demonstrate that stable TCNGs can be prepared with controllable responsive properties determined by the nature of the cationic charge incorporated and may have potential as vehicles for DNA delivery.

Keywords: poly(N-isopropyl acryamide), poly(2-dimethylamino)ethyl methacrylate, polyplex, thermoresponsive cationic nanogels

General overview

The application of nanotechnology in the field of pharmaceutical formulation development presents exciting opportunities for the discovery of novel medicines and therapeutic regimens that can improve treatment outcomes of many human diseases. Biocompatible nanogels prepared from intelligent polymers that undergo controlled changes in structure and properties in response to a physical or biological stimulus can improve key delivery steps that enhance the efficacy and reduce the toxicity of therapeutic agents. Positively charged chemically crosslinked nanogels prepared from intelligent polymers with temperature- and pH-responsive properties can form stable complexes with DNA. The DNA/nanogel complexes exhibit controllable binding of DNA based on the nature of the cationic charge and regulated response with changes in environmental conditions. Temperature-responsive crosslinked nanogels represent a novel class of DNA carriers that may serve as a platform for delivery of therapeutic genes.

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010

Eggshell membrane: A possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies

Kevin J Ruff, Dale P DeVore, Michael D Leu, Mark A Robinson

Clinical Interventions in Aging 2009, 4:235-240

Published Date: 18 May 2009