Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 9 » Issue 1

Changes in plasma levels of B-type natriuretic peptide with acute exacerbations of chronic obstructive pulmonary disease

Authors Nishimura K, Nishimura T, Onishi K, Oga T, Hasegawa Y, Jones PW

Received 29 September 2013

Accepted for publication 16 December 2013

Published 5 February 2014 Volume 2014:9(1) Pages 155—162

DOI https://doi.org/10.2147/COPD.S55143

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Koichi Nishimura,1 Takashi Nishimura,2 Katsuya Onishi,3 Toru Oga,4 Yoshinori Hasegawa,5 Paul W Jones6

1Department of Pulmonary Medicine, National Center for Geriatrics and Gerontology, Obu, Japan; 2Kyoto-Katsura Hospital, Kyoto, Japan; 3Onishi Heart Clinic, Tsu, Japan; 4Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 5Division of Respiratory Medicine, Department of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; 6Division of Clinical Science, St George's Hospital Medical School, London, England

Background: Elevated plasma B-type natriuretic peptide (BNP) levels and their association with heart failure have been reported in subjects with acute exacerbations of chronic obstructive pulmonary disease (AECOPD).
Purpose: To examine and compare plasma BNP levels and diastolic and systolic dysfunction in subjects with AECOPD and stable chronic obstructive pulmonary disease (COPD).
Methods: In all, 87 unselected consecutive hospitalizations due to AECOPD in 61 subjects and a total of 190 consecutive subjects with stable COPD were recruited. Plasma BNP levels were compared cross-sectionally and longitudinally. Transthoracic echocardiographic examinations were also performed in the hospitalized subjects.
Results: In the hospitalized subjects, the median plasma BNP level (interquartile range) was 55.4 (26.9–129.3) pg/mL and was higher than that of patients with stable COPD: 18.3 (10.0–45.3) for Global Initiative for Chronic Obstructive Lung Disease grade I; 25.8 (11.0–53.7) for grade II; 22.1 (9.1–52.6) for grade III; and 17.2 (9.6–22.9) pg/mL for grade IV, all P<0.001. In 15 subjects studied prospectively, the median plasma BNP level was 19.4 (9.8–32.2) pg/mL before AECOPD, 72.7 (27.7–146.3) pg/mL during AECOPD, and 14.6 (12.9–39.0) pg/mL after AECOPD (P<0.0033 and P<0.0013, respectively). Median plasma BNP levels during AECOPD were significantly higher in ten unsuccessfully discharged subjects 260.5 (59.4–555.0) than in 48 successfully discharged subjects 48.5 (24.2–104.0) pg/mL (P=0.0066). Only 5.6% of AECOPD subjects were associated with systolic dysfunction defined as a left ventricular ejection fraction (LVEF) <50%; a further 7.4% were considered to have impaired relaxation defined as an E/A wave velocity ratio <0.8 and a deceleration time of E >240 ms. BNP levels were weakly correlated with the E/peak early diastolic velocity of the mitral annulus (Ea) ratio (Spearman's rank correlation coefficient =0.353, P=0.018), but they were not correlated with the LVEF (Spearman's rank correlation coefficient =-0.221, P=0.108).
Conclusion: A modest elevation of plasma BNP is observed during AECOPD. It appears that AECOPD may have an impact on plasma BNP levels that is not attributable to heart failure.

Keywords: chronic obstructive pulmonary disease, acute exacerbations of chronic obstructive pulmonary disease, B-type natriuretic peptide, heart failure

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Managing hemophilia: the role of mobile technology

Khair K, Holland M

Smart Homecare Technology and TeleHealth 2014, 2:39-44

Published Date: 6 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010