Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Cell responses without receptors and ligands, using nanosecond pulsed electric fields (nsPEFs)

Authors Beebe SJ 

Received 11 July 2013

Accepted for publication 7 August 2013

Published 2 September 2013 Volume 2013:8(1) Pages 3401—3404

DOI https://doi.org/10.2147/IJN.S51357

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Stephen J Beebe

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk VA, USA

The plasma membrane is a lipid bilayer that surrounds and shelters the living structural and metabolic systems within cells. That membrane is replete with transmembrane proteins with and without ligand binding sites, oligosaccharides, and glycolipids on the cell exterior. Information transfer across this structure is closely controlled to maintain homeostasis and regulate cell responses to external stimuli. The plasma membrane is contiguous with the endoplasmic reticulum (ER) and nuclear membranes. A number of proteins form ER–mitochondria junctions, allowing interorganelle communications, especially for calcium transport. Transport mechanisms across these membranes include nongated channels or pores; single-gated channels for ion transport; carrier molecules for facilitated diffusion; and pumps for active transport of ions and macromolecules. During the activation of these transport systems, "pores" are formed through protein structures that transiently connect the intracellular and extracellular milieu. These pores are nanoscale structures with diameters of 0.2−4.0 nm. However, there can also be maligned movements of molecules across the plasma membranes. Staphylococcus aureus protein α-toxin and Streptococcus pyogenes protein streptolysin O both create pores that allow unsolicited molecular transfer across membranes that disrupts vital functions. Cytotoxic T-cells permeabilize the invading cell membranes with perforin, creating pores through which granzymes can induce apoptosis. These pores have a lumen of 5–30 nm with the majority at 13–20 nm.1

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.