Back to Journals » Stem Cells and Cloning: Advances and Applications » Volume 7

Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation

Authors Vidane A, Souza A, Sampaio R, Bressan F, Pieri N, Martins D, Meirelles F, Miglino MA, Ambrósio C

Received 15 May 2014

Accepted for publication 17 June 2014

Published 27 August 2014 Volume 2014:7 Pages 71—78

DOI https://doi.org/10.2147/SCCAA.S67790

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4


Atanasio S Vidane,1 Aline F Souza,1 Rafael V Sampaio,1 Fabiana F Bressan,2 Naira C Pieri,1 Daniele S Martins,2 Flavio V Meirelles,2 Maria A Miglino,1 Carlos E Ambrósio2

1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, São Paulo, Brazil

Abstract: Amnion-derived mesenchymal stem cells (AMSCs) are multipotent cells with an enhanced ability to differentiate into multiple lineages. AMSCs can be acquired through noninvasive methods, and therefore are exempt from the typical ethical issues surrounding stem cell use. The objective of this study was to isolate and characterize AMSCs from a cat amniotic membrane for future application in regenerative medicine. The cat AMSCs were harvested after mechanical and enzymatic digestion of amnion. In culture medium, the cat AMSCs adhered to a plastic culture dish and displayed a fibroblast-like morphology. Immunophenotyping assays were positive for the mesenchymal stem cell-specific markers CD73 and CD90 but not the hematopoietic markers CD34, CD45, and CD79. Under appropriate conditions, the cat AMSCs differentiated into osteogenic, chondrogenic, and adipogenic cell lineages. One advantage of cat AMSCs was nonteratogenicity, assessed 4 weeks post injection of undifferentiated AMSCs into immunodeficient mice. These findings suggest that cat amniotic membranes may be an important and useful source of mesenchymal stem cells for clinical applications, especially for cell or tissue replacement in chronic and degenerative diseases.

Keywords: amnion, cats, cell differentiation, fetal membranes, mesenchymal cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]