Back to Journals » Drug Design, Development and Therapy » Volume 8

Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro

Authors Wong BCK, Zhang H, Qin L, Chen H, Fang C, Lu A, Yang Z

Received 28 February 2014

Accepted for publication 1 May 2014

Published 22 July 2014 Volume 2014:8 Pages 993—1001

DOI https://doi.org/10.2147/DDDT.S63235

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3


Blenda Chi Kwan Wong,1 Hongqi Zhang,1 Ling Qin,2 Hubiao Chen,1 Chen Fang,1 Aiping Lu,1 Zhijun Yang1

1School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong; 2Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong

Abstract: Targeted drug delivery to cancer cells by use of antibody-conjugated liposomes (immunoliposomes) has attracted considerable interest in recent years. Despite increasing efforts in developing immunoliposomes as drug carriers, the investigation of useful tumor-associated antigen targets is far from complete. Carbonic anhydrase IX (CA IX) is a cell surface antigen characterized by hypoxia-induced expression in many solid tumors. This study investigated the feasibility of CA IX-directed immunoliposomes for targeted delivery of docetaxel to human lung cancer cells in vitro. Docetaxel-loaded immunoliposomes targeting CA IX were developed with an encapsulation efficiency of 84.4±3.9% and an average particle size of 143.9±11.1 nm. Using fluorescence-based flow cytometry, the in vitro binding activity of the immunoliposomes was found to be significantly higher (by 1.65-fold) than that of the nontargeted liposomes in CA IX-positive lung cancer cells, whereas no such difference was observed between the two groups when CA IX was not expressed. Furthermore, immunoliposomal docetaxel exhibited the strongest growth inhibitory effect against CA IX-positive lung cancer cells when compared with nontargeted liposomal docetaxel or free docetaxel solution. These data suggested that CA IX-directed immunoliposomes could serve as a promising drug delivery system for targeted killing of lung cancer cells.

Keywords: cancer chemotherapy, conjugation, liposome, nanotechnology, cell surface antigen, hypoxia


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]