Back to Journals » Journal of Pain Research » Volume 2

C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

Authors Domnick C, Hauck M, Casey K, Engel A, Lorenz J

Published 17 March 2009 Volume 2009:2 Pages 49—58

DOI https://doi.org/10.2147/JPR.S4860

Review by Single-blind

Peer reviewer comments 4


Claudia Domnick1, Michael Hauck1,2,3, Kenneth L Casey3, Andreas K Engel1, Jürgen Lorenz1,3,4

1Department of Neurophysiology and Pathophysiology; 2Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3Department of Neurology, University of Michigan, Ann Arbor, MI, USA; 4Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany

Abstract: Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage.

Keywords: C-fibers, oscillations, EEG, laser, capsaicin, inflammatory pain

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]