Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 16

Bronchial Variation: Anatomical Abnormality May Predispose Chronic Obstructive Pulmonary Disease

Authors Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Li QY

Received 16 December 2020

Accepted for publication 8 February 2021

Published 23 February 2021 Volume 2021:16 Pages 423—431

DOI https://doi.org/10.2147/COPD.S297777

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell


Xian Wen Sun,1,2 Ying Ni Lin,1,2 Yong Jie Ding,1,2 Shi Qi Li,1,2 Hong Peng Li,1,2 Qing Yun Li1,2

1Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China

Correspondence: Qing Yun Li
Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, People’s Republic of China
Tel +86-21-64314162
Email liqingyun68@hotmail.com

Abstract: Noxious particulate matter in the air is a primary cause of chronic obstructive pulmonary disease (COPD). The bronchial tree acts to filter these materials in the air and preserve the integrity of the bronchi. Accumulating evidence has demonstrated that smoking and air pollutants are the most prominent risk factors of COPD. Bifurcations in the airway may act as deposition sites for the retention of inhaled particles, however, little is known concerning the impacts of abnormalities of the bronchial anatomy in the pathogenesis of COPD. Studies have reported significant associations between bronchial variations and the symptoms in COPD. In particular, it has been shown that bronchial variations in the central airway tree may contribute to the development of COPD. In this review, we identified three common types of bronchial variation that were used to formulate a unifying hypothesis to explain how bronchial variations contribute to the development of COPD. We also investigated the current evidence for the involvement of specific genes including fibroblast growth factor 10 (Fgf10) and bone morphogenetic protein 4 (Bmp4) in the formation of bronchial variation. Finally, we highlight novel assessment strategies and opportunities for future research of bronchial variations and genetic susceptibility in COPD and comorbidities. Our data strongly highlight the role of bronchial variations in the development, complications, and acute exacerbation of COPD.

Keywords: chronic obstructive pulmonary disease, bronchial variation, fibroblast growth factor 10, bone morphogenetic protein 4

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]