Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility

Authors Qiao B, Li J, Zhu Q, Guo S, Qi X, Li W, Wu J, Liu Y, Jiang D

Received 10 November 2013

Accepted for publication 11 January 2014

Published 17 March 2014 Volume 2014:9(1) Pages 1423—1432


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Bo Qiao,1 Jidong Li,2 Qingmao Zhu,1 Shuquan Guo,1 Xiaotong Qi,1 Weichao Li,1 Jun Wu,1 Yang Liu,3 Dianming Jiang1

1Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 2Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 3Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China

Abstract: An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery.

Keywords: nano-hydroxyapatite, polyamide, glass fiber, biomechanics, biocompatibility

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Human mesenchymal stem cells as delivery of osteoprotegerin gene: homing and therapeutic effect for osteosarcoma

Qiao B, Shui W, Cai L, Guo SQ, Jiang DM

Drug Design, Development and Therapy 2015, 9:969-976

Published Date: 17 February 2015

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Oral health in the elderly patient and its impact on general well-being: a nonsystematic review

Gil-Montoya JA, Ferreira de Mello AL, Barrios R, Gonzalez-Moles MA, Bravo M

Clinical Interventions in Aging 2015, 10:461-467

Published Date: 11 February 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Biosimilar medicines and cost-effectiveness

Steven Simoens

ClinicoEconomics and Outcomes Research 2011, 3:29-36

Published Date: 10 February 2011

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010