Back to Journals » International Journal of Nanomedicine » Volume 7

Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery

Authors Wang Y, Su J, Wu, Lu, Yuan L, Yuan W, Sheng, Jin T

Received 2 November 2011

Accepted for publication 6 December 2011

Published 9 February 2012 Volume 2012:7 Pages 693—704


Review by Single-blind

Peer reviewer comments 4

Yu-Qiang Wang1,*, Jing Su2,*, Fei Wu2, Ping Lu1, Li-Fen Yuan1, Wei-En Yuan2, Jing Sheng1, Tuo Jin2
1Department of Geriatrics, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
*Both authors contributed equally to this work

Abstract: Polyethylenimine (PEI), especially PEI 25 kDa, has been widely studied for delivery of nucleic acid drugs both in vitro and in vivo. However, it lacks degradable linkages and is too toxic for therapeutic applications. Hence, low-molecular-weight PEI has been explored as an alternative to PEI 25 kDa. To reduce cytotoxicity and increase transfection efficiency, we designed and synthesized a novel small-molecular-weight PEI derivative (PEI-Et, Mn: 1220, Mw: 2895) with ethylene biscarbamate linkages. PEI-Et carried the ability to condense plasmid DNA (pDNA) into nanoparticles. Gel retardation assay showed complete condensation of pDNA at w/w ratios that exceeded three. The particle size of polymer/pDNA complexes was between 130 nm and 180 nm and zeta potential was 5–10 mV, which were appropriate for cell endocytosis. The morphology of PEI-Et/pDNA complexes observed by atomic force microscopy (AFM) was spherically shaped with diameters of 110–190 nm. The transfection efficiency of polymer/pDNA complexes as determined with the luciferase activity assay as well as fluorescence-activated cell-sorting analysis (FACS) was higher than commercially available PEI 25 kDa and Lipofectamine 2000 in various cell lines. Also, the polymer exhibited significantly lower cytotoxicity compared to PEI 25 kDa at the same concentration in three cell lines. Therefore, our results indicated that the PEI-Et would be a promising candidate for safe and efficient gene delivery in gene therapy.

Keywords: gene delivery, polyethylenimine, nanoparticles, cytotoxicity, transfection efficiency

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models

Zhang Y, Zhang H, Wu WB, Zhang FH, Liu S, Wang R, Sun YC, Tong T, Jing XB

International Journal of Nanomedicine 2014, 9:2019-2030

Published Date: 23 April 2014

Targeted nanotherapeutics in cancer

Shiekh FA

International Journal of Nanomedicine 2014, 9:1627-1628

Published Date: 26 March 2014

The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids

Contri RV, Frank LA, Kaiser M, Pohlmann AR, Guterres SS

International Journal of Nanomedicine 2014, 9:951-962

Published Date: 12 February 2014

Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic

Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Webster TJ

International Journal of Nanomedicine 2014, 9:549-557

Published Date: 16 January 2014

Antibacterial hemostatic dressings with nanoporous bioglass containing silver

Hu G, Xiao L, Tong P, Bi D, Wang H, Ma H, Zhu G, Liu H

International Journal of Nanomedicine 2012, 7:2613-2620

Published Date: 28 May 2012

Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C

International Journal of Nanomedicine 2012, 7:2109-2113

Published Date: 24 April 2012

Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system

Estevanato L, Cintra D, Baldini N, Portilho F, Barbosa L, Martins O, Lacava B, Miranda-Vilela AL, Tedesco AC, Báo S, Morais PC, Lacava ZGM

International Journal of Nanomedicine 2011, 6:1709-1717

Published Date: 18 August 2011