Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

Authors Haniu H, Saito N, Matsuda Y, Tsukahara T, Usui Y, Maruyama K, Takanashi S, Aoki K, Kobayashi S, Nomura H, Tanaka M, Okamoto M, Kato H

Received 3 December 2013

Accepted for publication 23 January 2014

Published 17 April 2014 Volume 2014:9(1) Pages 1979—1990


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Hisao Haniu,1,2 Naoto Saito,2,3 Yoshikazu Matsuda,4 Tamotsu Tsukahara,5 Yuki Usui,1,6,7 Kayo Maruyama,2,3 Seiji Takanashi,1 Kaoru Aoki,1 Shinsuke Kobayashi,1 Hiroki Nomura,1 Manabu Tanaka,1 Masanori Okamoto,1 Hiroyuki Kato1

1Department of Orthopaedic Surgery, Shinshu University School of Medicine, Nagano, Japan; 2Insutitute for Biomedical Sciences, Shinshu University, Nagano, Japan; 3Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Nagano, Japan; 4Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Saitama, Japan; 5Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan; 6Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan; 7Aizawa Hospital, Sports Medicine Center, Nagano, Japan

Abstract: This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) – and three CSCNTs of different lengths (CS-L, 20–80 µm; CS-S, 0.5–20 µm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 µg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 µg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs.

Keywords: multi-walled carbon nanotube, cup-stacked carbon nanotube, cytotoxicity, in vitro, intracellular acidity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Elucidation mechanism of different biological responses to multi-walled carbon nanotubes using four cell lines

Haniu H, Saito N, Matsuda Y, Kim YA, Park KC, Tsukahara T, Usui Y, Aoki K, Shimizu M, Ogihara N, Hara K, Takanashi S, Okamoto M, Ishigaki N, Nakamura K, Kato H

International Journal of Nanomedicine 2011, 6:3487-3497

Published Date: 21 December 2011

Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological responses

Haniu H, Saito N, Matsuda Y, Kim YA, Park KC, Tsukahara T, Usui Y, Aoki K, Shimizu M, Ogihara N, Hara K, Takanashi S, Okamoto M, Ishigaki N, Nakamura K, Kato H

International Journal of Nanomedicine 2011, 6:3295-3307

Published Date: 9 December 2011

DJ-1 as a potential biomarker for the development of biocompatible multiwalled carbon nanotubes

Haniu H, Tsukahara T, Matsuda Y, Usui Y, Aoki K, Shimizu M, Ogihara N, Hara K, Takanashi S, Okamoto M, Ishigaki N, Nakamura K, Kato H, Saito N

International Journal of Nanomedicine 2011, 6:2689-2695

Published Date: 4 November 2011

Readers of this article also read:

Analysis of SiO2 nanoparticles binding proteins in rat blood and brain homogenate

Shim KH, Hulme J, Maeng EH, Kim MK, An SSA

International Journal of Nanomedicine 2014, 9:207-215

Published Date: 15 December 2014

Clozapine-induced seizures, electroencephalography abnormalities, and clinical responses in Japanese patients with schizophrenia

Kikuchi YS, Sato W, Ataka K, Yagisawa K, Omori Y, Kanbayashi T, Shimizu T

Neuropsychiatric Disease and Treatment 2014, 10:1973-1978

Published Date: 15 October 2014

Calcifying nanoparticles promote mineralization in vascular smooth muscle cells: implications for atherosclerosis

Hunter LW, Charlesworth JE, Yu S, Lieske JC, Miller VM

International Journal of Nanomedicine 2014, 9:2689-2698

Published Date: 27 May 2014

The therapeutic effect of monocyte chemoattractant protein-1 delivered by an electrospun scaffold for hyperglycemia and nephrotic disorders

Yong C, Wang ZX, Zhang X, Shi XM, Ni ZJ, Fu H, Ding GS, Fu ZR, Yin H

International Journal of Nanomedicine 2014, 9:985-993

Published Date: 17 February 2014

Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models

Marianecci C, Rinaldi F, Di Marzio L, Mastriota M, Pieretti S, Celia C, Paolino D, Iannone M, Fresta M, Carafa M

International Journal of Nanomedicine 2014, 9:635-651

Published Date: 24 January 2014

Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects

Xiong Y, Ren C, Zhang B, Yang H, Lang Y, Min L, Zhang W, Pei F, Yan Y, Li H, Mo A, Tu C, Duan H

International Journal of Nanomedicine 2014, 9:485-494

Published Date: 13 January 2014

Evaluation of the genotoxicity of cellulose nanofibers

de Lima R, Feitosa LO, Maruyama CR, Barga MA, Yamawaki PC, Vieira IJ, Teixeira EM, Corrêa AC, Mattoso LH, Fraceto LF

International Journal of Nanomedicine 2012, 7:3555-3565

Published Date: 11 July 2012

Association between calcifying nanoparticles and placental calcification

Guo Y, Zhang D, Lu H, Luo S, Shen X

International Journal of Nanomedicine 2012, 7:1679-1686

Published Date: 27 March 2012

Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

Chur Chin, In Kyeom Kim, Dong Yoon Lim, et al

International Journal of Nanomedicine 2010, 5:315-321

Published Date: 19 April 2010