Back to Journals » International Journal of Nanomedicine » Volume 6

Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice

Authors Chia-Che Tsai, Chang C, Chen L, Chang Y, Keng-Li Lan, Yu-Hsien Wu, Chin-Wei Hsu, I-Hsiang Liu, Chung-Li Ho, Wan-Chi Lee, Hsiao-Chiang Ni, Chang T, Ting G, Lee T

Published 26 October 2011 Volume 2011:6 Pages 2607—2619

DOI https://doi.org/10.2147/IJN.S23834

Review by Single-blind

Peer reviewer comments 3

Chia-Che Tsai1, Chih-Hsien Chang1, Liang-Cheng Chen1, Ya-Jen Chang1, Keng-Li Lan2, Yu-Hsien Wu1, Chin-Wei Hsu1, I-Hsiang Liu1, Chung-Li Ho1, Wan-Chi Lee1, Hsiao-Chiang Ni1, Tsui-Jung Chang1, Gann Ting3, Te-Wei Lee1
1Institute of Nuclear Energy Research, Taoyuan, 2Cancer Center, Taipei Veterans General Hospital, Taipei, 3National Health Research Institutes, Taipei, Taiwan, ROC

Background: Nanoliposomes are designed as carriers capable of packaging drugs through passive targeting tumor sites by enhanced permeability and retention (EPR) effects. In the present study the biodistribution, pharmacokinetics, micro single-photon emission computed tomography (micro-SPECT/CT) image, dosimetry, and therapeutic efficacy of 188Re-labeled nanoliposomes (188Re-liposomes) in a C26 colonic peritoneal carcinomatosis mouse model were evaluated.
Methods: Colon carcinoma peritoneal metastatic BALB/c mice were intravenously administered 188Re-liposomes. Biodistribution and micro-SPECT/CT imaging were performed to determine the drug profile and targeting efficiency of 188Re-liposomes. Pharmacokinetics study was described by a noncompartmental model. The OLINDA|EXM® computer program was used for the dosimetry evaluation. For therapeutic efficacy, the survival, tumor, and ascites inhibition of mice after treatment with 188Re-liposomes and 5-fluorouracil (5-FU), respectively, were evaluated and compared.
Results: In biodistribution, the highest uptake of 188Re-liposomes in tumor tissues (7.91% ± 2.02% of the injected dose per gram of tissue [%ID/g]) and a high tumor to muscle ratio (25.8 ± 6.1) were observed at 24 hours after intravenous administration. The pharmacokinetics of 188Re-liposomes showed high circulation time and high bioavailability (mean residence time [MRT] = 19.2 hours, area under the curve [AUC] = 820.4%ID/g*h). Micro-SPECT/CT imaging of 188Re-liposomes showed a high uptake and targeting in ascites, liver, spleen, and tumor. The results were correlated with images from autoradiography and biodistribution data. Dosimetry study revealed that the 188Re-liposomes did not cause high absorbed doses in normal tissue but did in small tumors. Radiotherapeutics with 188Re-liposomes provided better survival time (increased by 34.6% of life span; P < 0.05), tumor and ascites inhibition (decreased by 63.4% and 83.3% at 7 days after treatment; P < 0.05) in mice compared with chemotherapeutics of 5-fluorouracil (5-FU).
Conclusion: The use of 188Re-liposomes for passively targeted tumor therapy had greater therapeutic effect than the currently clinically applied chemotherapeutics drug 5-FU in a colonic peritoneal carcinomatosis mouse model. This result suggests that 188Re-liposomes have potential benefit and are safe in treating peritoneal carcinomatasis of colon cancer.

Keywords: biodistribution, dosimetry, 5-fluorouracil, micro-SPECT/CT, 188Re-liposomes

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]