Back to Journals » International Journal of Nanomedicine » Volume 7

Biocompatible nanocomposite for PET/MRI hybrid imaging

Authors Locatelli E, Gil L, Israel LL, Passoni L, Naddaka M, Pucci A, Reese T, Gomez-Vallejo V, Milani P, Matteoli M, Llop J, Lellouche JP, Comes Franchini M

Received 13 September 2012

Accepted for publication 11 October 2012

Published 12 December 2012 Volume 2012:7 Pages 6021—6033

DOI https://doi.org/10.2147/IJN.S38107

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Erica Locatelli,1 Larraitz Gil,2 Liron Limor Israel,3 Lorena Passoni,4,5 Maria Naddaka,1 Andrea Pucci,1 Torsten Reese,6 Vanessa Gomez-Vallejo,2 Paolo Milani,5,7 Michela Matteoli,4,8 Jordi Llop,2 Jean Paul Lellouche,3 Mauro Comes Franchini1

1Department of Industrial Chemistry “Toso Montanari”. University of Bologna, Italy; 2Radiochemistry Department, Molecular Imaging Unit, CIC biomaGUNE, San Sebastián, Guipúzcoa, Spain; 3Department of Chemistry, Nanomaterials Research Centre, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel; 4Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy; 5Fondazione Filarete, Milano, Italy; 6Imaging Department, Molecular Imaging Unit, CIC biomaGUNE, San Sebastián, Guipúzcoa, Spain; 7CIMAINA and Department of Physics, University of Milano, Italy; 8Humanitas Clinical and Research Center, Rozzano, Italy

Abstract: A novel nanocarrier system was designed and developed with key components uniquely structured at the nanoscale for early cancer diagnosis and treatment. In order to perform magnetic resonance imaging, hydrophilic superparamagnetic maghemite nanoparticles (NPs) were synthesized and coated with a lipophilic organic ligand. Next, they were entrapped into polymeric NPs made of biodegradable poly(lactic-co-glycolic acid) linked to polyethylene glycol. In addition, resulting NPs have been conjugated on their surface with a 2,2'-(7-(4-((2-aminoethyl)amino)-1-carboxy-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ligand for subsequent 68Ga incorporation. A cell-based cytotoxicity assay has been employed to verify the in vitro cell viability of human pancreatic cancer cells exposed to this nanosystem. Finally, in vivo positron emission tomography-computerized tomography biodistribution studies in healthy animals were performed.

Keywords: maghemite nanoparticles, organic coating, polymeric nanoparticles, magnetic resonance imaging, radiolabeling, positron emission tomography

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles

Baldi G, Ravagli C, Mazzantini F, Loudos G, Adan J, Masa M, Psimadas D, Fragogeorgi EA, Locatelli E, Innocenti C, Sangregorio C, Comes Franchini M

International Journal of Nanomedicine 2014, 9:3037-3056

Published Date: 24 June 2014

Readers of this article also read:

Optimal delivery of male breast cancer follow-up care: improving outcomes

Ferzoco RM, Ruddy KJ

Breast Cancer: Targets and Therapy 2015, 7:371-379

Published Date: 23 November 2015

Advances in cancer pain from bone metastasis

Zhu XC, Zhang JL, Ge CT, Yu YY, Wang P, Yuan TF, Fu CY

Drug Design, Development and Therapy 2015, 9:4239-4245

Published Date: 18 August 2015

Identification of genes involved in breast cancer and breast cancer stem cells

Apostolou P, Toloudi M, Papasotiriou I

Breast Cancer: Targets and Therapy 2015, 7:183-191

Published Date: 15 July 2015

Clinical epidemiology of epithelial ovarian cancer in the UK

Doufekas K, Olaitan A

International Journal of Women's Health 2014, 6:537-545

Published Date: 23 May 2014

Breast cancer causes and treatment: where are we going wrong?

Seymour CB, Mothersill C

Breast Cancer: Targets and Therapy 2013, 5:111-119

Published Date: 3 December 2013

Update of research on the role of EZH2 in cancer progression

Shen L, Cui J, Liang S, Pang Y, Liu P

OncoTargets and Therapy 2013, 6:321-324

Published Date: 4 April 2013