Back to Journals » International Journal of Nanomedicine » Volume 14

Biocompatibility studies of fluorescent diamond particles-(NV)∼800nm (part V): in vitro kinetics and in vivo localization in rat liver following long-term exposure

Authors Gerstenhaber JA, Marcinkiewicz C, Barone FC, Sternberg M, D’Andrea MR, Lelkes PI, Feuerstein GZ

Received 22 March 2019

Accepted for publication 9 July 2019

Published 12 August 2019 Volume 2019:14 Pages 6451—6464

DOI https://doi.org/10.2147/IJN.S209663

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Melinda Thomas

Peer reviewer comments 2

Editor who approved publication: Dr Thomas Webster


Jonathan A Gerstenhaber,1,* Cezary Marcinkiewicz,1,2,* Frank C Barone,3 Mark Sternberg,2 Michael R D’Andrea,4 Peter I Lelkes,1 Giora Z Feuerstein2

1Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA; 2Debina Diagnostic Inc., Newtown Square, PA, USA; 3SUNY Downstate Medical Center, Department of Neurology, Brooklyn, NY, USA; 4Analytical Biological Services Inc., Wilmington, DE, USA

*These authors contributed equally to this work

Background: We recently reported on long-term comprehensive biocompatibility and biodistribution study of fluorescent nanodiamond particles (NV)-Z-average 800nm (FNDP-(NV)) in rats. FNDP-(NV) primary deposition was found in the liver, yet liver function tests remained normal.
Purpose: The present study aimed to gain preliminary insights on discrete localization of FNDP-(NV) in liver cells of the hepatic lobule unit and venous micro-vasculature. Kinetics of FDNP-(NV) uptake into liver cells surrogates in culture was conducted along with cell cytokinesis as markers of cells’ viability.
Methods: Preserved liver specimens from a pilot consisting of two animals which were stained for cytoskeletal elements (fluorescein-isothiocyanate-phalloidin) were examined for distribution of FNDP-(NV) by fluorescent microscopy (FM) and Confocal-FM (CFM) using near infra-red fluorescence (NIR). Hepatocellular carcinoma cells (HepG-2) and human umbilical vein endothelial cells (HUVEC) were cultured with FNDP-(NV) and assayed for particle uptake and location using spectrophotometric technology and microscopy.
Results: HepG-2 and HUVEC displayed rapid (<30 mins) onset and concentration-dependent FNDP-(NV) internalization and formation of peri-nuclear corona. FM/CFM of liver sections revealed FNDP-(NV) presence throughout the hepatic lobules structures marked by spatial distribution, venous microvascular spaces and parenchyma and non-parenchyma cells.
Conclusion: The robust presence of FNDP-(NV) throughout the hepatic lobules including those internalized within parenchyma cells and agglomerates in the liver venous micro-circulation were not associated with macro or micro histopathological signs nor vascular lesions. Cells cultures indicated normal cytokinesis in cells containing FNDP-(NV) agglomerates. Liver parenchyma cells and the liver microcirculation remain agnostic to presence of FNDP-(NV) in the sinusoids or internalized in the hepatic cells.

Keywords: carbon nanoparticles, HepG-2 cells, HUVEC, subcellular distribution, cytokinesis, cellular uptake of nanodiamonds

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]