Back to Journals » Clinical Ophthalmology » Volume 7

Automated grading system for evaluation of ocular redness associated with dry eye

Authors Rodriguez JD, Johnston PR, Ousler III GW, Smith LM, Abelson MB

Received 30 October 2012

Accepted for publication 18 February 2013

Published 20 June 2013 Volume 2013:7 Pages 1197—1204

DOI https://doi.org/10.2147/OPTH.S39703

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

John D Rodriguez,1 Patrick R Johnston,1 George W Ousler III,1 Lisa M Smith,1 Mark B Abelson1,2

1Ora, Inc, Andover, MA, USA; 2Department of Ophthalmology, Harvard Medical School, Boston, MA, USA

Background: We have observed that dry eye redness is characterized by a prominence of fine horizontal conjunctival vessels in the exposed ocular surface of the interpalpebral fissure, and have incorporated this feature into the grading of redness in clinical studies of dry eye.
Aim: To develop an automated method of grading dry eye-associated ocular redness in order to expand on the clinical grading system currently used.
Methods: Ninety nine images from 26 dry eye subjects were evaluated by five graders using a 0–4 (in 0.5 increments) dry eye redness (Ora CalibraTM Dry Eye Redness Scale [OCDER]) scale. For the automated method, the Opencv computer vision library was used to develop software for calculating redness and horizontal conjunctival vessels (noted as "horizontality"). From original photograph, the region of interest (ROI) was selected manually using the open source ImageJ software. Total average redness intensity (Com-Red) was calculated as a single channel 8-bit image as R − 0.83G − 0.17B, where R, G and B were the respective intensities of the red, green and blue channels. The location of vessels was detected by normalizing the blue channel and selecting pixels with an intensity of less than 97% of the mean. The horizontal component (Com-Hor) was calculated by the first order Sobel derivative in the vertical direction and the score was calculated as the average blue channel image intensity of this vertical derivative. Pearson correlation coefficients, accuracy and concordance correlation coefficients (CCC) were calculated after regression and standardized regression of the dataset.
Results: The agreement (both Pearson's and CCC) among investigators using the OCDER scale was 0.67, while the agreement of investigator to computer was 0.76. A multiple regression using both redness and horizontality improved the agreement CCC from 0.66 and 0.69 to 0.76, demonstrating the contribution of vessel geometry to the overall grade. Computer analysis of a given image has 100% repeatability and zero variability from session to session.
Conclusion: This objective means of grading ocular redness in a unified fashion has potential significance as a new clinical endpoint. In comparisons between computer and investigator, computer grading proved to be more reliable than another investigator using the OCDER scale. The best fitting model based on the present sample, and usable for future studies, was C4 = –12.24 + 2.12C2HOR + 0.88C2RED :C4 is the predicted investigator grade, and C2HOR and C2REDare logarithmic transformations of the computer calculated parameters COM-Hor and COM-Red. Considering the superior repeatability, computer automated grading might be preferable to investigator grading in multicentered dry eye studies in which the subtle differences in redness incurred by treatment have been historically difficult to define.

Keywords: conjunctival diseases, classification, diagnosis, humans, hyperemia, image processing, computer-assisted, observer variation, keratoconjunctivitis sicca

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Investigation of extended blinks and interblink intervals in subjects with and without dry eye

Rodriguez JD, Ousler III GW, Johnston PR, Lane K, Abelson MB

Clinical Ophthalmology 2013, 7:337-342

Published Date: 14 February 2013

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010