Back to Browse Journals » Open Access Animal Physiology » Volume 2

Auditory sensitivity and the outer hair cell system in the CBA mouse model of age-related hearing loss

Authors Robert D Frisina, Xiaoxia Zhu

Published 4 June 2010 Volume 2010:2 Pages 9—16


Review by Single-blind

Peer reviewer comments 4

Robert D Frisina, Xiaoxia Zhu

Otolaryngology, Biomedical Engineering, Neurobiology, and Anatomy Departments, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA

Abstract: Age-related hearing loss is a highly prevalent sensory disorder, from both the clinical and animal model perspectives. Understanding of the neurophysiologic, structural, and molecular biologic bases of age-related hearing loss will facilitate development of biomedical therapeutic interventions to prevent, slow, or reverse its progression. Thus, increased understanding of relationships between aging of the cochlear (auditory portion of the inner ear) hair cell system and decline in overall hearing ability is necessary. The goal of the present investigation was to test the hypothesis that there would be correlations between physiologic measures of outer hair cell function (otoacoustic emission levels) and hearing sensitivity (auditory brainstem response thresholds), starting in middle age. For the CBA mouse, a useful animal model of age-related hearing loss, it was found that correlations between these two hearing measures occurred only for high sound frequencies in middle age. However, in old age, a correlation was observed across the entire mouse range of hearing. These findings have implications for improved early detection of progression of age-related hearing loss in middle-aged mammals, including mice and humans, and distinguishing peripheral etiologies from central auditory system decline.

Keywords: presbycusis, hearing loss, hair cells, auditory brainstem response, otoacoustic emissions, mouse hearing

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at:

Other article by this author:

A novel high-throughput analysis approach: immune response-related genes are upregulated in age-related hearing loss

Tra Y, Frisina RD, D'Souza M

Open Access Bioinformatics 2011, 3:107-122

Published Date: 22 August 2011

Readers of this article also read:

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Managing hemophilia: the role of mobile technology

Khair K, Holland M

Smart Homecare Technology and TeleHealth 2014, 2:39-44

Published Date: 6 May 2014

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010

Evidence supporting the use of recombinant activated factor VII in congenital bleeding disorders

Pär I Johansson, Sisse R Ostrowski

Drug Design, Development and Therapy 2010, 4:107-116

Published Date: 29 June 2010