Back to Archived Journals » Journal of Receptor, Ligand and Channel Research » Volume 1

ATP8A1 activity and phosphatidylserine transbilayer movement

Authors Soupene E, Kemaladewi DU, Kuypers FA

Published 22 September 2008 Volume 2008:1 Pages 1—10

DOI https://doi.org/10.2147/JRLCR.S3773

Review by Single-blind

Peer reviewer comments 4


Eric Soupene, Dwi Utami Kemaladewi, Frans A Kuypers

Children’s Hospital Oakland Research Institute, Oakland, CA, USA

Abstract: The asymmetric distribution of the amino-containing phospholipids, phosphatidyl-serine (PS) and phosphatidyl-ethanolamine (PE), across the two leaflets of red blood cell (RBC) membrane is essential to the function and survival of the cell. PS and PE are sequestered in the inner leaflet by an ATP-dependent transport activity of a membrane protein known as the RBC flippase that specifically moves amino-phospholipids from the outer to the inner leaflet. The enucleated RBC lacks the means to replace damaged enzymes and inactivation of the flippase can lead to the unwarranted exposure of PS on the cell surface. Loss in the ability to maintain phospholipid asymmetry is exacerbated in RBC disorders and PS-exposing RBCs present in the circulation play a significant role in the pathology of hemoglobinopathies. We identified the Atp8a1 protein, a member of the family of the P4-type ATPases, as a RBC flippase candidate. Atp8a1 is expressed in RBC precursors and is present in the membrane of mature red cells. The flippase activity of the protein was established in purified secretory vesicles of Saccharomyces cerevisiae. ATPase activity was stimulated by PS and PE. In addition, Atp8a1 can move PS molecules across the leaflets of the vesicle membrane in presence of ATP.

Keywords: flippase, ATP8A1, PS transport, red blood cell, sickle cell disease

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]