Back to Journals » International Journal of General Medicine » Volume 5

New approach to beta cell function screening by nitric oxide assessment of obese individuals at the population level

Authors Adami CE, Gobato

Received 4 March 2012

Accepted for publication 12 April 2012

Published 21 May 2012 Volume 2012:5 Pages 449—454

DOI https://doi.org/10.2147/IJGM.S31433

Review by Single-blind

Peer reviewer comments 2

Elinton Adami Chaim, Renata Cristina Gobato

University of Campinas (UNICAMP), Faculty of Medical Sciences, Department of Surgery, Cidade Universitária Zeferino Vaz, Barão Geraldo, Brazil

Background: Approximately 27% of Americans today are obese, and this condition increases the prevalence of metabolic syndrome and diabetes. The UK Prospective Diabetes Study suggests that loss of beta cell function can begin at least 10 years before diagnosis, and mean beta cell function is already less than 50% at diagnosis. The aim of this research was to assess the possibility of detecting loss of beta cell function in obese patients by a novel approach involving nitric oxide assessment using a combination of technologies.
Materials and methods: One hundred and fifteen obese patients (93 women, 22 men) of mean age 39 (range 17–62) years, who were candidates for bariatric surgery were included in the study, and underwent laboratory tests, including fasting blood glucose, fasting insulin plasma, and examination with the Electro Sensor complex. The Electro Sensor complex offers a new way to assess nitric oxide production using five technologies managed by software, ie, the galvanic skin response, photoelectrical plethysmography, heart rate variability analysis, bioimpedance analysis, and blood pressure oscillometric measurements. The homeostasis model assessment 2% beta cell function (HOMA2% β) algorithm was calculated from fasting blood glucose and fasting insulin plasma using free software provided by The University of Oxford Diabetes Trial Unit. The Electro Sensor complex percent beta (ESC% β) algorithm was calculated from the Electro Sensor complex data and statistical neural network. Statistical analysis was performed to correlate ESC% β and HOMA2% β using the coefficient of correlation and Spearman's coefficient of rank correlation. Receiver-operating characteristic curves were also constructed to determine the specificity and sensitivity of ESC% β in detecting a HOMA2% β value < 100.
Results: The coefficient of correlation between ESC% β and HOMA2% β was 0.72 (using log values) and the Spearman's coefficient of rank correlation (rho) was 0.799 (P < 0.0001). ESC% β had a sensitivity of 77.14% and specificity of 78.21% (cutoff ≤ 157, corresponding to 40% after conversion into a 0%–100% scale) to detect a HOMA2% β value < 100 (P < 0.0001).
Conclusion: The ESC% β algorithm has a high predictive correlation with HOMA2% β, and good specificity and sensitivity to detect a HOMA2% β value < 100. Therefore, the Electro Sensor complex enabling nitric oxide assessment represents a novel method of screening for beta cell function in the obese population on a large scale. Such a tool, which is easy to administer, noninvasive, and cost-effective, would be of great benefit for widespread screening of beta cell function in obese patients.

Keywords: beta cell function, Electro Sensor complex, nitric oxide assessment, ESC% β algorithm, HOMA2% β algorithm, obese population, screening

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010