Back to Journals » Clinical Interventions in Aging » Volume 7

Cognitive plasticity in normal and pathological aging

Authors Fernandez Ballesteros R, Botella, Zamarron, Molina, Cabras, Schettini R, Tarraga

Received 7 October 2011

Accepted for publication 16 November 2011

Published 4 January 2012 Volume 2012:7 Pages 15—25


Review by Single-blind

Peer reviewer comments 5

Rocío Fernández-Ballesteros1, Juan Botella1, María Dolores Zamarrón1, María Ángeles Molina1, Emilia Cabras1, Rocío Schettini1, Lluis Tárraga2
Autonomous University of Madrid, Madrid, Spain; 2ACE Foundation, Catalonian Institute of Applied Neurosciences, Barcelona, Spain

Abstract: The main goal of the present study is to examine to what extent age and cognitive impairment contribute to learning performance (cognitive plasticity, cognitive modifiability, or learning potential). To address this question, participants coming from four studies (Longitudinal Study of Active Aging, age range, 55–75 years, N = 458; Longitudinal Study in the very old [90+], age range, 90–102, N = 188, and Cognitive Plasticity within the Course of Cognitive Impairment, 97 “Normal”, 57 mild cognitive impairment [MCI], and 98 Alzheimer's disease [AD] patients) were examined through a measure of verbal learning (developed from Rey). The results show that all age, MCI, and AD groups learned across the five learning trials of that test, but significant differences were found due to age, pathology, and education. The effects of pathology (MCI and AD) can be expressed in a metric of “years of normal decline by age”; specifically, being MCI means suffering an impairment in performance that is equivalent to the decline of a normal individual during 15 years, whereas the impact of AD is equivalent to 22.7 years. Likewise, the improvement associated with about 5 years of education is equivalent to about 1 year less of normal aging. Also, the two pathological groups significantly differed from “normal” groups in the delayed trial of the test. The most dramatic difference is that between the “normal” group and the AD patients, which shows relatively poorer performance for the AD group in the delayed trial than in the first learning trial. The potential role of this unique effect for quick detection purposes of AD is assessed (in the 75–89 years age range, sensitivity and specificity equal 0.813 and 0.917, respectively).

Keywords: cognitive plasticity, cognitive modifiability, learning age, aging, Alzheimer's disease, mild cognitive impairment

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Is older adult care mediated by caregivers' cultural stereotypes? The role of competence and warmth attribution

Fernández-Ballesteros R, Bustillos A, Santacreu M, Schettini R, Díaz-Veiga P, Huici C

Clinical Interventions in Aging 2016, 11:545-552

Published Date: 5 May 2016

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010