Back to Browse Journals » International Journal of Nanomedicine » Volume 1 » Issue 1

Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo

Authors Saba Choudhary, Mikal Berhe, Karen M Haberstroh, Thomas J Webster

Published 15 March 2006 Volume 2006:1(1) Pages 41—49

Saba Choudhary1, Mikal Berhe1, Karen M Haberstroh1, Thomas J Webster1,2

1Weldon School of Biomedical Engineering and 2School of Materials Engineering, Purdue University, West Lafayette, IN, USA
Abstract: In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micronsized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours’ adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.
Keywords: nanotechnology, metals, Ti, CoCrMo, vascular stents, endothelial cells, vascular smooth muscle cells

Download Article [PDF] 

Readers of this article also read:

Nanosilver particles in medical applications: synthesis, performance, and toxicity

Ge L, Li Q, Wang M, Ouyang J, Li XJ, Xing MM

International Journal of Nanomedicine 2014, 9:2399-2407

Published Date: 16 May 2014

Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry

Andrade CG, Cabral Filho PE, Tenorio DPL, Santos BS, Beltrão EIC, Fontes A, Carvalho Jr LB

International Journal of Nanomedicine 2013, 8:4623-4629

Published Date: 2 December 2013

Vincristine sulfate liposomal injection for acute lymphoblastic leukemia

Soosay Raj TA, Smith AM, Moore AS

International Journal of Nanomedicine 2013, 8:4361-4369

Published Date: 6 November 2013

New strategy for monitoring targeted therapy: molecular imaging

Teng FF, Meng X, Sun XD, Yu JM

International Journal of Nanomedicine 2013, 8:3703-3713

Published Date: 30 September 2013

Prescribing tests must have curriculum support

Lemon TI, Shah RD

Advances in Medical Education and Practice 2013, 4:91-93

Published Date: 7 May 2013

Incorporation of quantum dots on virus in polycationic solution

Jin-Oh You, Yu-San Liu, Yu-Chuan Liu, Kye-Il Joo, Ching-An Peng

International Journal of Nanomedicine 2006, 1:59-64

Published Date: 15 March 2006

Silk-fibroin-coated liposomes for long-term and targeted drug delivery

Andrea S Gobin, Robyn Rhea, Robert A Newman, Anshu B Mathur

International Journal of Nanomedicine 2006, 1:81-87

Published Date: 15 March 2006

Where is the weak linkage in the globin chain?

Viroj Wiwanitkit

International Journal of Nanomedicine 2006, 1:109-110

Published Date: 15 March 2006