Back to Browse Journals » International Journal of Nanomedicine » Volume 1 » Issue 1

Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo

Authors Saba Choudhary, Mikal Berhe, Karen M Haberstroh, Thomas J Webster

Published 15 March 2006 Volume 2006:1(1) Pages 41—49

Saba Choudhary1, Mikal Berhe1, Karen M Haberstroh1, Thomas J Webster1,2

1Weldon School of Biomedical Engineering and 2School of Materials Engineering, Purdue University, West Lafayette, IN, USA
Abstract: In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micronsized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours’ adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.
Keywords: nanotechnology, metals, Ti, CoCrMo, vascular stents, endothelial cells, vascular smooth muscle cells

Download Article [PDF] 

Readers of this article also read:

“Recovery” from the diagnosis of autism – and then?

Barnevik Olsson M, Westerlund J, Lundström S, Giacobini M, Fernell E, Gillberg C

Neuropsychiatric Disease and Treatment 2015, 11:999-1005

Published Date: 7 April 2015

Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells

Tian A, Qin XF, Wu A, Zhang H, Xu Q, Xing D, Yang H, Qiu B, Xue X, Zhang D, Dong C

International Journal of Nanomedicine 2015, 10:2423-2439

Published Date: 25 March 2015

Nanopharmaceuticals (part 2): products in the pipeline

Weissig V, Guzman-Villanueva D

International Journal of Nanomedicine 2015, 10:1245-1257

Published Date: 11 February 2015

Inhibited biofilm formation and improved antibacterial activity of a novel nanoemulsion against cariogenic Streptococcus mutans in vitro and in vivo

Li YF, Sun HW, Gao R, Liu KY, Zhang HQ, Fu QH, Qing SL, Guo G, Zou QM

International Journal of Nanomedicine 2015, 10:447-462

Published Date: 9 January 2015

Cytotoxic effects of curcumin in osteosarcoma cells

Moran JM, Rodriguez-Velasco FJ, Roncero-Martin R, Vera V, Pedrera-Zamorano JD

International Journal of Nanomedicine 2014, 9:5273-5275

Published Date: 14 November 2014

Enhanced oral absorption and therapeutic effect of acetylpuerarin based on D-α-tocopheryl polyethylene glycol 1000 succinate nanoemulsions

Sun DQ, Wei XB, Xue X, Fang ZJ, Ren MR, Lou HY, Zhang XM

International Journal of Nanomedicine 2014, 9:3413-3423

Published Date: 18 July 2014

An ensemble method approach to investigate kinase-specific phosphorylation sites

Datta S, Mukhopadhyay S

International Journal of Nanomedicine 2014, 9:2225-2239

Published Date: 10 May 2014

Reducing dropout of contact lens wear with Biotrue multipurpose solution

Rah MJ, Merchea MM, Doktor MQ

Clinical Ophthalmology 2014, 8:293-299

Published Date: 24 January 2014

Heuristic modeling of macromolecule release from PLGA microspheres

Szlęk J, Pacławski A, Lau R, Jachowicz R, Mendyk A

International Journal of Nanomedicine 2013, 8:4601-4611

Published Date: 3 December 2013