Back to Journals » Nature and Science of Sleep » Volume 7

Evaluation of an automated single-channel sleep staging algorithm

Authors Wang Y, Loparo KA, Kelly MR, Kaplan RF

Received 27 March 2015

Accepted for publication 30 June 2015

Published 18 September 2015 Volume 2015:7 Pages 101—111

DOI https://doi.org/10.2147/NSS.S77888

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Professor Steven Shea

Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard F Kaplan1

1General Sleep Corporation, Euclid, OH, 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, 3Department of Psychology, University of Arizona, Tucson, AZ, USA

Background: We previously published the performance evaluation of an automated electroencephalography (EEG)-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM) Sleep, against laboratory polysomnography (PSG) using a consensus of expert visual scorers.
Methods: Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18–60 years, median age 32.7 years), including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1–A2) were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa) and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM, Total Deep Sleep, and Total REM).
Results: Sensitivities of Z-PLUS compared to the PSG Consensus were 0.84 for Light Sleep, 0.74 for Deep Sleep, and 0.72 for REM. Similarly, positive predictive values were 0.85 for Light Sleep, 0.78 for Deep Sleep, and 0.73 for REM. Overall, kappa agreement of 0.72 is indicative of substantial agreement.
Conclusion: This study demonstrates that Z-PLUS can automatically assess sleep stage using a single A1–A2 EEG channel when compared to the sleep stage scoring by a consensus of polysomnographic technologists. Our findings suggest that Z-PLUS may be used in conjunction with Z-ALG for single-channel EEG-based sleep staging.

Keywords: EEG, sleep staging, algorithm, Zmachine, automatic sleep scoring, sleep detection, single channel

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Performance evaluation of an automated single-channel sleep–wake detection algorithm

Kaplan RF, Wang Y, Loparo KA, Kelly MR, Bootzin RR

Nature and Science of Sleep 2014, 6:113-122

Published Date: 15 October 2014

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Mesenchymal stem cell therapy for osteoarthritis: current perspectives

Wyles CC, Houdek MT, Behfar A, Sierra RJ

Stem Cells and Cloning: Advances and Applications 2015, 8:117-124

Published Date: 28 August 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012