Back to Journals » Vascular Health and Risk Management » Volume 10

Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function

Authors Sakai T, Sato B, Hara K, Hara Y, Naritomi Y, Koyanagi S, Hara H, Nagao T, Ishibashi T

Received 4 June 2014

Accepted for publication 13 August 2014

Published 17 October 2014 Volume 2014:10 Pages 591—597


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Daniel Duprez

Takaaki Sakai,1 Bunpei Sato,2 Koji Hara,3 Yuichi Hara,3 Yuji Naritomi,3 Samon Koyanagi,1 Hiroshi Hara,3 Tetsuhiko Nagao,4 Toru Ishibashi5

1Department of Cardiology, Haradoi Hospital, Fukuoka, Japan; 2MiZ Company Limited, Fujisawa, Kanagawa, Japan; 3Department of Internal Medicine, Haradoi Hospital, Fukuoka, Japan; 4Midorino Clinic, Aoba, Higashi-ku, Fukuoka, Japan; 5Department of Rheumatology and Orthopedic Surgery, Haradoi Hospital, Fukuoka, Japan

Background: The redox imbalance between nitric oxide and superoxide generated in the endothelium is thought to play a pivotal role in the development of endothelial dysfunction. A third reactive oxygen species (ROS), H2O2, is known to have both beneficial and detrimental effects on the vasculature. Nonetheless, the influence of the hydroxyl radical, a byproduct of H2O2 decay, is unclear, and there is no direct evidence that the hydroxyl radical impairs endothelial function in conduit arteries. Molecular hydrogen (H2) neutralizes detrimental ROS, especially the hydroxyl radical.
Objectives: To assess the influence of the hydroxyl radical on the endothelium and to confirm that a gaseous antioxidant, H2, can be a useful modulator of blood vessel function.
Methods: The efficacy of water containing a high concentration of H2 was tested by measuring flow-mediated dilation (FMD) of the brachial artery (BA). The subjects were randomly divided into two groups: the high-H2 group, who drank high-H2 water containing 7 ppm H2 (3.5 mg H2 in 500 mL water); and the placebo group. Endothelial function was evaluated by measuring the FMD of the BA. After measurement of diameter of the BA and FMD at baseline, volunteers drank the high-H2 water or placebo water immediately and with a 30-minute interval; FMD was compared to baseline.
Results: FMD increased in the high-H2 group (eight males; eight females) from 6.80%±1.96% to 7.64%±1.68% (mean ± standard deviation) and decreased from 8.07%±2.41% to 6.87%±2.94% in the placebo group (ten males; eight females). The ratio to the baseline in the changes of FMD showed significant improvement (P<0.05) in the high-H2 group compared to the placebo group.
Conclusion: H2 may protect the vasculature from shear stress-derived detrimental ROS, such as the hydroxyl radical, by maintaining the nitric oxide-mediated vasomotor response.

Keywords: flow-mediated dilation, reactive oxygen species, molecular hydrogen, hydroxyl radical, 5–7 ppm, peroxynitrite

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]