Back to Journals » International Journal of Nanomedicine » Volume 14

Aptamer-Antibody Complementation On Multiwalled Carbon Nanotube-Gold Transduced Dielectrode Surfaces To Detect Pandemic Swine Influenza Virus

Authors Wang F, Gopinath SCB, Lakshmipriya T

Received 19 June 2019

Accepted for publication 9 October 2019

Published 25 October 2019 Volume 2019:14 Pages 8469—8481


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Anderson Oliveira Lobo

Fang Wang,1 Subash CB Gopinath,2,3 Thangavel Lakshmipriya3

1Department of Infectious Diseases,Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospitality, Zhengzhou 450053, People’s Republic of China; 2School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis 02600, Malaysia; 3Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis 01000, Malaysia

Correspondence: Subash CB Gopinath
School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis 02600, Malaysia
Tel +601110472006

Background: A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains.
Materials and methods: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.
Results: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).
Conclusion: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.

Keywords: influenza pandemic, membrane protein, aptasensor, immunosensor, dielectrode sensor

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]