Back to Journals » International Journal of Nanomedicine » Volume 15

Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment

Authors Wang J, Wu X, Shen P, Wang J, Shen Y, Shen Y, Webster TJ, Deng J

Received 23 November 2019

Accepted for publication 16 February 2020

Published 19 March 2020 Volume 2020:15 Pages 1903—1914


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Anderson Oliveira Lobo

Ji Wang,1,* Xia Wu,2,* Peng Shen,3 Jun Wang,4 Yidan Shen,1 Yan Shen,5 Thomas J Webster,6 Junjie Deng3

1Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China; 2Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China; 3Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China; 4Department of General Surgery, The Fifth People’s Hospital of Wujiang, Suzhou, People’s Republic of China; 5Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 6Department of Chemical Engineering, Northeastern University, Boston, MA, USA

*These authors contributed equally to this work

Correspondence: Junjie Deng
Wenzhou Institute, University of Chinese Academy of Sciences, No. 16 Xinsan Road, Hi-Tech Industry Park, Wenzhou, Zhejiang, People’s Republic of China
Tel +86 577 88017548
Fax +86 577 88017554
Thomas J Webster
Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
Tel +1 617 373 6585

Background: Cancer is one of the major causes of death and is difficult to cure using existing clinical therapies. Clinical cancer treatments [such as surgery, chemotherapy (CHT), radiotherapy (RT) and immunotherapy (IT)] are widely used but they have limited therapeutic effects and unavoidable side effects. Recently, the development of novel nanomaterials offers a platform for combinational therapy (meaning a combination of two or more therapeutic agents) which is a promising approach for cancer therapy. Recent studies have demonstrated several types of nanomaterials suitable for photothermal therapy (PTT) based on a near-infrared (NIR) light-responsive system. PTT possesses favorable properties such as being low in cost, and having high temporospatial control with minimal invasiveness. However, short NIR light penetration depth limits its functions.
Methods: In this review, due to their promise, we focus on inorganic nanomaterials [such as hollow mesoporous silica nanoparticles (HMSNs), tungsten sulfide quantum dots (WS2QDs), and gold nanorods (AuNRs)] combining PTT with CHT, RT or IT in one treatment, aiming to provide a comprehensive understanding of PTT-based combinational cancer therapy.
Results: This review found much evidence for the use of inorganic nanoparticles for PTT-based combinational cancer therapy.
Conclusion: Under synergistic effects, inorganic nanomaterial-based combinational treatments exhibit enhanced therapeutic effects compared to PTT, CHT, RT, IT or PDT alone and should be further investigated in the cancer field.

Keywords: photothermal agents, hyperthermia, chemotherapy, radiotherapy, immunotherapy, photodynamic therapy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]