Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Apoptosis of THP-1 macrophages induced by protoporphyrin IX-mediated sonodynamic therapy

Authors Guo S, Sun X, Cheng J, Xu H, Dan J, Shen J, Zhou Q, Zhang Y, Meng L, Cao W, Tian Y

Received 6 February 2013

Accepted for publication 23 April 2013

Published 20 June 2013 Volume 2013:8(1) Pages 2239—2246

DOI https://doi.org/10.2147/IJN.S43717

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Shuyuan Guo,1* Xin Sun,1,2* Jiali Cheng,1 Haobo Xu,1 Juhua Dan,2 Jing Shen,3 Qi Zhou,4 Yun Zhang,1 Lingli Meng,1 Wenwu Cao,4,5 Ye Tian1,2

1Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China; 2Division of Pathophysiology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin, People's Republic of China; 3Division of Oncology, the Third Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China; 4Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, People's Republic of China; 5Department of Mathematics and Materials Research Institute, Pennsylvania State University, University Park, PA, USA

*These authors contributed equally to this work

Background: Sonodynamic therapy (SDT) was developed as a localized ultrasound-activated cytotoxic therapy for cancer. The ability of SDT to destroy target tissues selectively is especially appealing for atherosclerotic plaque, in which selective accumulation of the sonosensitizer, protoporphyrin IX (PpIX), had been demonstrated. Here we investigate the effects of PpIX-mediated SDT on macrophages, which are the main culprit in progression of atherosclerosis.
Methods and results: Cultured THP-1 derived macrophages were incubated with PpIX. Fluorescence microscopy showed that the intracellular PpIX concentration increased with the concentration of PpIX in the incubation medium. MTT assay demonstrated that SDT with PpIX significantly decreased cell viability, and this effect increased with duration of ultrasound exposure and PpIX concentration. PpIX-mediated SDT induced both apoptosis and necrosis, and the maximum apoptosis to necrosis ratio was obtained after SDT with 20 µg/mL PpIX and five minutes of sonication. Production of intracellular singlet oxygen and secondary disruption of the cytoskeleton were also observed after SDT with PpIX.
Conclusion: PpIX-mediated SDT had apoptotic effects on THP-1 macrophages via generation of intracellular singlet oxygen and disruption of the cytoskeleton. PpIX-mediated SDT may be a potential treatment to attenuate progression of atherosclerotic plaque.

Keywords: sonodynamic therapy, protoporphyrin IX, atherosclerotic plaque, macrophage, singlet oxygen, cytoskeleton

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Effects of 5-aminolevulinic acid-mediated sonodynamic therapy on macrophages

Cheng J, Sun X, Guo S, Cao W, Chen H, Jin Y, Li B, Li Q, Wang H, Wang Z, Zhou Q, Wang P, Zhang Z, Cao W, Tian Y

International Journal of Nanomedicine 2013, 8:669-676

Published Date: 13 February 2013

Readers of this article also read:

Monitoring cancer stem cells: insights into clinical oncology

Lin SC, Xu YC, Gan ZH, Han K, Hu HY, Yao Y, Huang MZ, Min DL

OncoTargets and Therapy 2016, 9:731-740

Published Date: 11 February 2016

BRAF mutation as a biomarker in colorectal cancer

Varghese AM, Saltz LB

Advances in Genomics and Genetics 2015, 5:347-353

Published Date: 15 October 2015

Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials

Van Heertum RL, Scarimbolo R, Ford R, Berdougo E, O’Neal M

Drug Design, Development and Therapy 2015, 9:5215-5223

Published Date: 11 September 2015

Cancer therapy and cardiovascular risk: focus on bevacizumab

Economopoulou P, Kotsakis A, Kapiris I, Kentepozidis N

Cancer Management and Research 2015, 7:133-143

Published Date: 3 June 2015

Tracking the 2015 Gastrointestinal Cancers Symposium: bridging cancer biology to clinical gastrointestinal oncology

Aprile G, Leone F, Giampieri R, Casagrande M, Marino D, Faloppi L, Cascinu S, Fasola G, Scartozzi M

OncoTargets and Therapy 2015, 8:1149-1156

Published Date: 22 May 2015

Application of liposomal technologies for delivery of platinum analogs in oncology

Liu D, He C, Wang AZ, Lin W

International Journal of Nanomedicine 2013, 8:3309-3319

Published Date: 26 August 2013

Multidisciplinary care in pediatric oncology

Cantrell MA, Ruble K

Journal of Multidisciplinary Healthcare 2011, 4:171-181

Published Date: 30 May 2011

Use of electronic medical records in oncology outcomes research

Gena Kanas, Libby Morimoto, Fionna Mowat, et al

ClinicoEconomics and Outcomes Research 2010, 2:1-14

Published Date: 24 February 2010