Back to Journals » International Journal of Nanomedicine » Volume 11

Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1

Authors Vacas-Córdoba E, Maly M, de la Mata J, Gómez R, Pion M, Munoz-Fernandez MA

Received 14 September 2015

Accepted for publication 9 December 2015

Published 5 April 2016 Volume 2016:11 Pages 1281—1294


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Thomas Webster

Enrique Vacas-Córdoba,1–4 Marek Maly,5,6 Francisco J De la Mata,4,7 Rafael Gómez,4,7 Marjorie Pion,1–4 Mª Ángeles Muñoz-Fernández1–4

1Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, 2Health Research Institute Gregorio Marañon, 3Spanish HIV HGM BioBanK, 4Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; 5Faculty of Science, Jan Evangelista Purkynĕ University, Ústí nad Labem, Czech Republic; 6Laboratory of Applied Mathematics and Physics (LaMFI), University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland; 7Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain

Abstract: Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection.

Keywords: carbosilane dendrimer, HIV, mechanism, microbicide, nanotechnology

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]