Back to Journals » OncoTargets and Therapy » Volume 9

Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway

Authors Zhang J, Jiang H, Xie L, Hu J, Li L, Yang M, Cheng L, Liu B, Qian X

Received 13 December 2015

Accepted for publication 14 March 2016

Published 24 May 2016 Volume 2016:9 Pages 2885—2895

DOI https://doi.org/10.2147/OTT.S102408

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Narasimha Reddy Parine

Peer reviewer comments 6

Editor who approved publication: Dr Faris Farassati


Jingyu Zhang,1 Hua Jiang,2 Li Xie,1 Jing Hu,1 Li Li,1 Mi Yang,1 Lei Cheng,1 Baorui Liu,1 Xiaoping Qian1

1Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, 2Department of Oncology, Affiliated Changzhou No 2 People’s Hospital, Nanjing Medical University, Nanjing, People’s Republic of China

Abstract: Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-L-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma.

Keywords: manumycin, colorectal cancer, PI3K-AKT pathway, ROS

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]