Back to Journals » International Journal of Nanomedicine » Volume 6

Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel

Authors Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C

Published 15 November 2011 Volume 2011:6 Pages 2873—2877


Review by Single-blind

Peer reviewer comments 2

Meiwan Chen1,2,‡, Zhiwen Yang1,‡, Hongmei Wu1, Xin Pan1, Xiaobao Xie3, Chuanbin Wu1
Research and Development Center of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, China
These authors contributed equally to this work

Purpose: The purpose of the present study was to elucidate the antimicrobial activity and mechanism of silver nanoparticles incorporated into thermosensitive gel (S-T-Gel) on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa.
Patients and methods: This study investigated the growth, permeability, and morphology of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa cells in order to observe the action of S-T-Gel on the membrane structure of these three bacteria. The cell morphology of normal and treated bacteria cells was assessed by transmission electron microscopy (TEM), and the effects of S-T-Gel on genome DNA of bacterial cells were evaluated by agarose gel electrophoresis.
Results: S-T-Gel showed promising activity against Staphylococcus aureus and moderate activity against Escherichia coli and Pseudomonas aeruginosa. The observation with TEM suggested that S-T-Gel may destroy the structure of bacterial cell membranes in order to enter the bacterial cell. S-T-Gel then condensed DNA and combined and coagulated with the cytoplasm of the damaged bacteria, resulting in the leakage of the cytoplasmic component and the eventual death of these three bacteria. In addition, the analysis of agarose gel electrophoresis demonstrated that S-T-Gel could increase the decomposability of genome DNA.
Conclusion: These results about promising antimicrobial activity and mechanism of S-T-Gel may be useful for further research and development in in-vivo studies.

Keywords: molecule mechanism, bacterial cells, S-T-Gel

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement

Quan G, Niu B, Singh V, Zhou Y, Wu C, Pan X, Wu C

International Journal of Nanomedicine 2017, 12:8801-8811

Published Date: 13 December 2017

Cubic phase nanoparticles for sustained release of ibuprofen formulation characterization and enhanced bioavailability study

Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, Huang X, Guo Z, Quan G, Shi X, Chen B, Li G, Wu C

International Journal of Nanomedicine 2013, 8:845-854

Published Date: 26 February 2013

Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica

Wang Z, Chen B, Quan G, Li F, Wu Q, Dian L, Dong Y, Li G, Wu C

International Journal of Nanomedicine 2012, 7:5807-5818

Published Date: 22 November 2012

In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation

Chen B, Wang Z, Quan G, Peng X, Pan X, Wang R, Xu Y, Li G, Wu C

International Journal of Nanomedicine 2012, 7:199-209

Published Date: 16 January 2012

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012


Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010