Back to Journals » International Journal of Nanomedicine » Volume 15

Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite

Authors Zhou L, Wong HM, Li QL

Received 8 September 2020

Accepted for publication 21 October 2020

Published 13 November 2020 Volume 2020:15 Pages 8963—8982


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Prof. Dr. Thomas J. Webster

Li Zhou,1 Hai Ming Wong,1 Quan Li Li2

1Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR 999077, People’s Republic of China; 2Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230000, People’s Republic of China

Correspondence: Hai Ming Wong
Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, SAR 999077, People’s Republic of China
Tel +852 28590261
Fax +852 25593803
Quan Li Li
College and Hospital of Stomatology, Anhui Medical University, No. 69, Meishan Road, Hefei 230000, People’s Republic of China

Abstract: Dental plaque is one type of biofouling on the tooth surface that consists of a diverse population of microorganisms and extracellular matrix and causes oral diseases and even systematic diseases. Numerous studies have focused on preventing bacteria and proteins on tooth surfaces, especially with anti-biofouling coatings. Anti-biofouling coatings can be stable and sustainable over the long term on the tooth surface in the complex oral environment. In this review, numerous anti-biofouling coatings on the tooth surface and hydroxyapatite (as the main component of dental hard tissue) were summarized based on their mechanisms, which include three major strategies: antiprotein and antibacterial adhesion through chemical modification, contact killing through the modification of antimicrobial agents, and antibacterial agent release. The first strategy of coatings can resist the adsorption of proteins and bacteria. However, these coatings use passive strategies and cannot kill bacteria. The second strategy can interact with the cell membrane of bacteria to cause bacterial death. Due to the possibility of delivering a high antibacterial agent concentration locally, the third strategy is recommended and will be the trend of local drug use in dentistry in the future.

Keywords: anti-biofouling coating, antibacterial agent, hydroxyapatite, tooth surface, binding

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]