Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles

Authors Di Bucchianico S, Fabbrizi MR, Cirillo S, Uboldi C, Gilliland D, Valsami-Jones E, Migliore L

Received 27 November 2013

Accepted for publication 27 December 2013

Published 8 May 2014 Volume 2014:9(1) Pages 2191—2204

DOI https://doi.org/10.2147/IJN.S58397

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Sebastiano Di Bucchianico,1 Maria Rita Fabbrizi,1 Silvia Cirillo,1 Chiara Uboldi,1 Douglas Gilliland,2 Eugenia Valsami-Jones,3,4 Lucia Migliore1

1Department of Translational Research and New Technologies in Medicine and Surgery, Medical Genetics Unit, University of Pisa, Pisa, Italy; 2European Commission-Joint Research Centre, Institute for Health and Consumer Protection, NanoBioSciences Unit, Ispra, Italy; 3School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; 4Earth Sciences, Natural History Museum, Cromwell Road, London, UK

Abstract: Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models.

Keywords: Au nanoparticles, cytotoxicity, aneuploidy, oxidative DNA damage, micronuclei, particle size

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Treatment adherence in multiple sclerosis: a survey of Belgian neurologists

Decoo D, Vokaer M

Patient Preference and Adherence 2015, 9:1669-1676

Published Date: 19 November 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Patient preference and ease of use for different coagulation factor VIII reconstitution device scenarios: a cross-sectional survey in five European countries

Cimino E, Linari S, Malerba M, Halimeh S, Biondo F, Westfeld M

Patient Preference and Adherence 2014, 8:1713-1720

Published Date: 12 December 2014

Examining the relationship between adherence and satisfaction with antidepressant treatment

Aljumah K, Ahmad Hassali A, AlQhatani S

Neuropsychiatric Disease and Treatment 2014, 10:1433-1438

Published Date: 4 August 2014

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010