Back to Journals » International Journal of Nanomedicine » Volume 7

An optimized molecular inclusion complex of diferuloylmethane: enhanced physical properties and biological activity

Authors Tan Q, Li, Wu, Mei, Zhao, Zhang J

Received 27 July 2012

Accepted for publication 31 August 2012

Published 9 October 2012 Volume 2012:7 Pages 5385—5393


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Qunyou Tan,1,* Yi Li,2–4,* Jianyong Wu,2,* Hu Mei,5 Chunjing Zhao,3 Jingqing Zhang2

1Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 2Medicine Engineering Research Center, Chongqing Key Laboratory of Biochemical and Molecular Pharmacology, Chongqing Medical University, 3School of Pharmacy, Second Affiliated Hospital, Chongqing Medical University, 4School of Pharmacy, The First People’s Hospital of Chongqing, 5College of Bioengineering, Chongqing University, Chongqing, People’s Republic of China

*These authors contributed equally to this work

Objective: The purpose of this study was to explore and evaluate the enhanced physical properties and biological activity of a molecular inclusion complex (MICDH) comprising diferuloylmethane (DFM) and hydroxypropyl-β-cyclodextrin.
Methods: The preparation conditions of MICDH were optimized using an orthogonal experimental design. The solubility, in vitro release and model fitting, microscopic morphology, molecular structure simulation, anti-lung cancer activity, and action mechanism of MICDH were evaluated.
Results: The solubility of DFM was improved 4400-fold upon complexation with hydroxypropyl-β-cyclodextrin. The release rate of DFM was significantly higher from MICDH than from free DFM. MICDH exhibited higher antitumor activity against human lung adenocarcinoma A549 cells than free DFM. More cells were arrested in the S/G2 phase of the cell cycle or were induced to undergo apoptosis when treated with MICDH than when treated with free DFM. Furthermore, increased reactive oxygen species and intracellular calcium ion levels and decreased mitochondrial membrane potential were observed in cells treated with MICDH.
Conclusion: MICDH markedly improved the physical properties and antitumor activity of DFM. MICDH may prove to be a preferred alternative to free DFM as a formulation for DFM delivery in lung cancer treatment.

Keywords: biological properties, action mechanism, hydroxypropyl-β-cyclodextrin, antitumor activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine–phospholipid nanocomplex

Hu J, Chen D, Jiang R, Tan Q, Zhu B, Zhang J

International Journal of Nanomedicine 2014, 9:4411-4420

Published Date: 17 September 2014

Nanosized sustained-release pyridostigmine bromide microcapsules: process optimization and evaluation of characteristics

Tan Q, Jiang R, Xu M, Liu G, Li S, Zhang J

International Journal of Nanomedicine 2013, 8:737-745

Published Date: 20 February 2013

Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine

Tan Q, He D, Wu M, Yang L, Ren Y, Liu J, Zhang J

International Journal of Nanomedicine 2013, 8:477-484

Published Date: 1 February 2013

Improved biological properties and hypouricemic effects of uricase from Candida utilis loaded in novel alkaline enzymosomes

Tan QY, Zhang JQ, Wang N, Yang H, Li X, Xiong HR, Wu JY, Zhao CJ, Wang H, Yin HF

International Journal of Nanomedicine 2012, 7:3929-3938

Published Date: 23 July 2012

Readers of this article also read:

Inertial sensors as measurement tools of elbow range of motion in gerontology

Sacco G, Turpin JM, Marteu A, Sakarovitch C, Teboul B, Boscher L, Brocker P, Robert P, Guerin O

Clinical Interventions in Aging 2015, 10:491-497

Published Date: 23 February 2015

Simple filter microchip for rapid separation of plasma and viruses from whole blood

Wang SQ, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U

International Journal of Nanomedicine 2012, 7:5019-5028

Published Date: 17 September 2012

Acoustic cardiac signals analysis: a Kalman filter–based approach

Salleh SH, Hussain HS, Swee TT, Ting CM, Noor AM, Pipatsart S, Ali J, Yupapin PP

International Journal of Nanomedicine 2012, 7:2873-2881

Published Date: 11 June 2012

Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

Tan Q, Liu WD, Guo CY, Zhai GX

International Journal of Nanomedicine 2011, 6:1621-1630

Published Date: 10 August 2011

Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt

Guan P, Lu Y, Qi J, Niu M, Lian R, Hu F, Wu W

International Journal of Nanomedicine 2011, 6:965-974

Published Date: 4 May 2011