Back to Journals » International Journal of Nanomedicine » Volume 14

An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury

Authors He Z, Zang H, Zhu L, Huang K, Yi T, Zhang S, Cheng S

Received 17 September 2018

Accepted for publication 30 November 2018

Published 18 January 2019 Volume 2019:14 Pages 721—732


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun

Zhijiang He,1,* Hongxin Zang,2,* Lei Zhu,3 Kui Huang,1 Tailong Yi,4 Sai Zhang,4 Shixiang Cheng4

1Logistics University of Chinese People’s Armed Police Force (PAP), Tianjin 300309, China; 2Department of Nursing, Characteristic Medical Center of Chinese People’s Armed Police Force (PAP), Tianjin 300162, China; 3Department of Orthopaedics Characteristic Medical Center of Chinese People’s Armed Police Force (PAP), Tianjin 300162, China; 4Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People’s Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China

*These authors contributed equally to this work

Background: Traumatic spinal cord injury (SCI) causes neuronal death, demyelination, axonal degeneration, inflammation, glial scar formation, and cystic cavitation resulting in interruption of neural signaling and loss of nerve function. Multifactorial targeted therapy is a promising strategy for SCI.
Methods: The anti-inflammatory peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) and brain-derived neurotrophic factor (BDNF)-modified hyaluronan-methylcellulose (HAMC) hydrogel was designed for minimally invasive, localized, and sustained intrathecal protein delivery. The physical and biological characteristics of HAMC-KAFAK/BDNF hydrogel were measured in vitro. SCI model was performed in rats and HAMC-KAFAK/BDNF hydrogel was injected into the injured site of spinal cord. The neuronal regeneration effect was evaluated by inflammatory cytokine levels, behavioral test and histological analysis at 8 weeks post operation.
Results: HAMC-KAFAK/BDNF hydrogel showed minimally swelling property and sustained release of the KAFAK and BDNF. HAMC-KAFAK/BDNF hydrogel significantly improved the proliferation of PC12 cells in vitro without cytotoxicity. Significant recovery in both neurological function and nerve tissue morphology in SCI rats were observed in HAMC-KAFAK/BDNF group. HAMC-KAFAK/BDNF group showed significant reduction in proinflammatory cytokines expression and cystic cavitation, decreased glial scar formation, and improved neuronal survival in the rat SCI model compared to HAMC group and SCI group.
Conclusion: The HAMC-KAFAK/BDNF hydrogel promotes functional recovery of rats with spinal cord injury by regulating inflammatory cytokine levels and improving axonal regeneration.

Keywords: hyaluronan-methylcellulose hydrogel, anti-inflammatory peptide, neuroprotection, spinal cord injury

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]