Back to Journals » International Journal of Nanomedicine » Volume 7

Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery

Authors Duan XP, Xiao JS, Yin Q, Zhang ZW, Mao SR, Li YP

Received 22 March 2012

Accepted for publication 20 April 2012

Published 14 September 2012 Volume 2012:7 Pages 4961—4972

DOI https://doi.org/10.2147/IJN.S32069

Review by Single-blind

Peer reviewer comments 3

Xiaopin Duan,1,2 Jisheng Xiao,2 Qi Yin,2 Zhiwen Zhang,2 Shirui Mao,1 Yaping Li2

1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China

Background and methods: A new amphiphilic comb-shaped copolymer (SP) was synthesized by conjugating poly(styrene-co-maleic anhydride) with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer.
Results: The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV) and a small particle size (130–200 nm) at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines.
Conclusion: This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery.

Keywords: poly(styrene-co-maleic anhydride), polyethylenimine, DNA, gene delivery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold

Cao L, Duan PG, Wang HR, Li XL, Yuan FL, Fan ZY, Li SM, Dong J

International Journal of Nanomedicine 2012, 7:5881-5888

Published Date: 28 November 2012

Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

Shi S, Jia J, Guo X, Zhao Y, Chen D, Guo Y, Cheng T, Zhang X

International Journal of Nanomedicine 2012, 7:5593-5602

Published Date: 25 October 2012

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF

International Journal of Nanomedicine 2012, 7:5351-5360

Published Date: 8 October 2012

Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery

Liu R, Lai YS, He B, Li Y, Wang G, Chang S, Gu Z

International Journal of Nanomedicine 2012, 7:5249-5258

Published Date: 5 October 2012

A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer

Deng L, Ke X, He Z, Yang D, Gong H, Zhang Y, Jing X, Yao J, Chen J

International Journal of Nanomedicine 2012, 7:5053-5065

Published Date: 19 September 2012

Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

Chen DZ, Tang QS, Li XD, Zhou XJ, Zang J, Xue WQ, Xiang JY, Guo CQ

International Journal of Nanomedicine 2012, 7:4973-4982

Published Date: 14 September 2012

Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells

Zhang WJ, Li ZH, Liu Y, Ye DX, Li JH, Xu LY, Wei B, Zhang XL, Liu XY, Jiang XQ

International Journal of Nanomedicine 2012, 7:4459-4472

Published Date: 13 August 2012

Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α

Manoharan Y, Ji Q, Yamazaki T, Chinnathambi S, Chen S, Ganesan S, Hill JP, Ariga K, Hanagata N

International Journal of Nanomedicine 2012, 7:3625-3635

Published Date: 16 July 2012

Chemical nature and structure of organic coating of quantum dots is crucial for their application in imaging diagnostics

Bakalova R, Zhelev Z, Kokuryo D, Spasov L, Aoki I, Saga T

International Journal of Nanomedicine 2011, 6:1719-1732

Published Date: 18 August 2011