Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation

Authors Nemmar A, Albarwani S, Beegam S, Yuvaraju P, Yasin J, Attoub S, Ali BH

Received 11 August 2013

Accepted for publication 14 January 2014

Published 2 June 2014 Volume 2014:9(1) Pages 2779—2789

DOI https://doi.org/10.2147/IJN.S52818

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Abderrahim Nemmar,1 Sulayma Albarwani,2 Sumaya Beegam,1 Priya Yuvaraju,1 Javed Yasin,3 Samir Attoub,4 Badreldin H Ali5

1Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 2Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman; 3Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 4Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 5Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman

Abstract: Amorphous silica nanoparticles (SiNPs) are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours) systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg). Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1β concentration. However, tumor necrosis factor α concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane, thiobarbituric acid reactive substances, catalase, and glutathione S-transferase, were not affected by SiNPs. The in vitro exposure of human umbilical vein endothelial cells to SiNPs showed a reduced cellular viability, and more potency was seen with 50 nm SiNPs. Both sizes of SiNPs caused a decrease in endothelium-dependent relaxation of isolated small mesenteric arteries. We conclude that amorphous SiNPs cause systemic inflammation and coagulation events, and alter vascular reactivity. Overall, the effects observed with 50 nm SiNPs were more pronounced than those with 500 nm SiNPs. These findings provide new insight into the deleterious effect of amorphous SiNPs on vascular homeostasis.

Keywords: amorphous silica nanoparticles, thrombosis, toxicity, systemic inflammation


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice

Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH

International Journal of Nanomedicine 2017, 12:2913-2922

Published Date: 10 April 2017

Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles

Nemmar A, Yuvaraju P, Beegam S, Yasin J, Kazzam EE, Ali BH

International Journal of Nanomedicine 2016, 11:919-928

Published Date: 7 March 2016

Readers of this article also read:

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Profile of efraloctocog alfa and its potential in the treatment of hemophilia A

George LA, Camire RM

Journal of Blood Medicine 2015, 6:131-141

Published Date: 24 April 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010