Back to Journals » Journal of Inflammation Research » Volume 12

Alginate encapsulation for bupivacaine delivery and mesenchymal stromal cell immunomodulatory cotherapy

Authors Davis MS, Marrero-Berrios I, Perez XI, Rabolli CP, Radhakrishnan P, Manchikalapati D, SchianodiCola J, Kamath H, Schloss RS, Yarmush J

Received 30 October 2018

Accepted for publication 28 December 2018

Published 12 March 2019 Volume 2019:12 Pages 87—97

DOI https://doi.org/10.2147/JIR.S192749

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Cristina Weinberg

Peer reviewer comments 2

Editor who approved publication: Dr Ning Quan


Mollie S Davis,1 Ileana Marrero-Berrios,1 Xiomara I Perez,1 Charles P Rabolli,1 Palangat Radhakrishnan,2 Devasena Manchikalapati,2 Joseph SchianodiCola,2 Hattiyangangadi Kamath,2 Rene S Schloss,1 Joel Yarmush2

1Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA; 2Department of Anesthesiology, New York Methodist Hospital, Brooklyn, NY, USA

Purpose: Mesenchymal stromal cells (MSCs) are used to treat various inflammatory conditions. In parallel, to mitigate pain associated with inflammation, analgesics or opioids are prescribed, often with significant side effects. Local anesthetics (LAs) offer a promising alternative to these medications. However, their short duration and negative effects on anti-inflammatory MSCs have limited their therapeutic effectiveness. To mitigate these negative effects and to move toward developing a cotherapy, we engineered a sustained release bupivacaine alginate-liposomal construct that enables up to 4 days of LA release. By encapsulating MSC in alginate (eMSC), we demonstrate that we can further increase drug concentration to clinically relevant levels, without compromising eMSC viability or anti-inflammatory function.
Materials and methods: MSCs were freely cultured or encapsulated in alginate microspheres ± TNFα/IFN-γ and were left untreated or dosed with bolus, liposomal, or construct bupivacaine. After 24, 48, and 96 hours, the profiles were assessed to quantify secretory function associated with LA–MSC interactions. To approximate LA exposure over time, a MATLAB model was generated.
Results: eMSCs secrete similar levels of IL-6 and prostaglandin E2 (PGE2) regardless of LA modality, whereas free MSCs secrete larger amounts of IL-6 and lower amounts of anti-inflammatory PGE2. Modeling the system indicated that higher doses of LA can be used in conjunction with eMSC while retaining eMSC viability and function. In general, eMSC treated with higher doses of LA secreted similar or higher levels of immunomodulatory cytokines.
Conclusion: eMSCs, but not free MSC, are protected from LA, regardless of LA modality. Increasing the LA concentration may promote longer and stronger pain mitigation while the protected eMSCs secrete similar, if not higher, immunomodulatory cytokine levels. Therefore, we have developed an approach, using eMSC and the LA construct that can potentially be used to reduce pain as well as improve MSC anti-inflammatory function.

Keywords: MSC cytokine secretion, local anesthetics, encapsulated MSC, drug diffusion model

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]