Back to Journals » Open Access Journal of Sports Medicine » Volume 1

Advocating neuroimaging studies of transmitter release in human physical exercise challenges studies

Authors Boecker H, Othman A, Mueckter S, Scheef L, Pensel M, Daamen M, Jankowski J, Schild H, Tölle T, Schreckenberger M

Published 6 September 2010 Volume 2010:1 Pages 167—175

DOI https://doi.org/10.2147/OAJSM.S12054

Review by Single anonymous peer review

Peer reviewer comments 3



Henning Boecker1, Ahmed Othman1, Sarah Mueckter1, Lukas Scheef1, Max Pensel1, Marcel Daamen1, Jakob Jankowski1, HH Schild2, TR Tölle3, M Schreckenberger4

1FE Klinische Funktionelle Neurobildgebung, Radiologische Universitätsklinik, Friedrich-Wilhelms–Universität Bonn, Germany; 2Radiologische Universitätsklinik, Friedrich-Wilhelms-Universität Bonn, Germany; 3TUM Neurologische Klinik und Poliklinik im Neuro-Kopf-Zentrum, Klinikum rechts der Isar der Technischen Universität München, München, Germany; 4Klinik und Poliklinik für Nuklearmedizin am Mainzer Universitätsklinikum, Johannes Gutenberg-Universität, Mainz, Germany

Abstract: This perspective attempts to outline the emerging role of positron emission tomography (PET) ligand activation studies in human exercise research. By focusing on the endorphinergic system and its acclaimed role for exercise-induced antinociception and mood enhancement, we like to emphasize the unique potential of ligand PET applied to human athletes for uncovering the neurochemistry of exercise-induced psychophysiological phenomena. Compared with conventional approaches, in particular quantification of plasma beta-endorphin levels under exercise challenges, which are reviewed in this article, studying opioidergic effects directly in the central nervous system (CNS) with PET and relating opioidergic binding changes to neuropsychological assessments, provides a more refined and promising experimental strategy. Although a vast literature dating back to the 1980s of the last century has been able to reproducibly demonstrate peripheral increases of beta-endorphin levels after various exercise challenges, so far, these studies have failed to establish robust links between peripheral beta-endorphin levels and centrally mediated behavioral effects, ie, modulation of mood and/or pain perception. As the quantitative relation between endorphins in the peripheral blood and the CNS remains unknown, the question arises, to what extent conventional blood-based methods can inform researchers about central neurotransmitter effects. As previous studies using receptor blocking approaches have also revealed equivocal results regarding exercise effects on pain and mood processing, it is expected that PET and other functional neuroimaging applications in athletes may in future help uncover some of the hitherto unknown links between neurotransmission and psychophysiological effects related to physical exercise.

Keywords: positron emission tomography, beta-endorphins, opioids

Creative Commons License © 2010 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.