Back to Journals » International Journal of Nanomedicine » Volume 6

Adhesion of osteoblasts to a nanorough titanium implant surface

Authors Gongadze, Kabaso D, Bauer, Slivnik, Schmuki P, van Rienen U, Iglič A

Published 31 August 2011 Volume 2011:6 Pages 1801—1816

DOI https://doi.org/10.2147/IJN.S21755

Review by Single-blind

Peer reviewer comments 4


Ekaterina Gongadze1, Doron Kabaso2, Sebastian Bauer3, Tomaž Slivnik2, Patrik Schmuki3, Ursula van Rienen1, Aleš Iglič2
1Institute of General Electrical Engineering, University of Rostock, Rostock, Germany; 2Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science, Friedrich-Alexander University of Erlangen-Nurenberg, Erlangen, Germany

Abstract: This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.

Keywords: osteoblasts, nanostructures, adhesion, titanium implants, osteointegration

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]