Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Activation of Erk and p53 regulates copper oxide nanoparticle-induced cytotoxicity in keratinocytes and fibroblasts

Authors Luo C, Li Y, Yang L, Zheng Y, Long J, Jia J, Xiao S, Liu J

Received 13 May 2014

Accepted for publication 15 August 2014

Published 10 October 2014 Volume 2014:9(1) Pages 4763—4772

DOI https://doi.org/10.2147/IJN.S67688

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Cheng Luo,1 Yan Li,2 Liang Yang,1 Yan Zheng,3 Jiangang Long,1 Jinjing Jia,3 Shengxiang Xiao,3 Jiankang Liu1

1Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, 2Center for Bioinformatics, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China; 3Department of Dermatology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China

Abstract: Copper oxide nanoparticles (CuONP) have attracted increasing attention due to their unique properties and have been extensively utilized in industrial and commercial applications. For example, their antimicrobial capability endows CuONP with applications in dressings and textiles against bacterial infections. Along with the wide applications, concerns about the possible effects of CuONP on humans are also increasing. It is crucial to evaluate the safety and impact of CuONP on humans, and especially the skin, prior to their practical application. The potential toxicity of CuONP to skin keratinocytes has been reported recently. However, the underlying mechanism of toxicity in skin cells has remained unclear. In the present work, we explored the possible mechanism of the cytotoxicity of CuONP in HaCaT human keratinocytes and mouse embryonic fibroblasts (MEF). CuONP exposure induced viability loss, migration inhibition, and G2/M phase cycle arrest in both cell types. CuONP significantly induced mitogen-activated protein kinase (extracellular signal-regulated kinase [Erk], p38, and c-Jun N-terminal kinase [JNK]) activation in dose- and time-dependent manners. U0126 (an inhibitor of Erk), but not SB 239063 (an inhibitor of p38) or SP600125 (an inhibitor of JNK), enhanced CuONP-induced viability loss. CuONP also induced decreases in p53 and p-p53 levels in both cell types. Cyclic pifithrin-α, an inhibitor of p53 transcriptional activity, enhanced CuONP-induced viability loss. Nutlin-3α, a p53 stabilizer, prevented CuONP-induced viability loss in HaCaT cells, but not in MEF cells, due to the inherent toxicity of nutlin-3α to MEF. Moreover, the experiments on primary keratinocytes are in accordance with the conclusions acquired from HaCaT and MEF cells. These data demonstrate that the activation of Erk and p53 plays an important role in CuONP-induced cytotoxicity, and agents that preserve Erk or p53 activation may prevent CuONP-induced cytotoxicity.

Keywords: cell cycle arrest, CuONP, MAPK, nutlin-3α, cyclic pifithrin-α

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Self-assembled micelles of amphiphilic poly(L-phenylalanine)-b-poly(L-serine) polypeptides for tumor-targeted delivery

Zhao ZM, Wang Y, Han J, Wang KL, Yang D, Yang YH, Du Q, Song YJ, Yin XX

International Journal of Nanomedicine 2014, 9:5849-5862

Published Date: 12 December 2014

Functionalization of ethylene vinyl acetate with antimicrobial chlorhexidine hexametaphosphate nanoparticles

Wood NJ, Maddocks SE, Grady HJ, Collins AM, Barbour ME

International Journal of Nanomedicine 2014, 9:4145-4152

Published Date: 27 August 2014

Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells

Wu XN, Miao LY, Yao YF, Wu WL, Liu Y, Chen XF, Sun WB

International Journal of Nanomedicine 2014, 9:4135-4143

Published Date: 27 August 2014

Fabrication of nanoadjuvant with poly-ɛ-caprolactone (PCL) for developing a single-shot vaccine providing prolonged immunity [Corrigendum]

Prashant CK, Bhat M, Srivastava SK, Saxena A, Kumar M, Singh A, Samim M, Ahmad FJ, Dinda AK

International Journal of Nanomedicine 2014, 9:4033-4034

Published Date: 21 August 2014

Development of nanofluorapatite polymer-based composite for bioactive orthopedic implants and prostheses

Hu G, Wang H, Yao X, Bi D, Zhu G, Tang S, Wei J, Yang L, Tong P, Xiao L

International Journal of Nanomedicine 2014, 9:3875-3884

Published Date: 11 August 2014

Self-assembled nanoparticles based on the c(RGDfk) peptide for the delivery of siRNA targeting the VEGFR2 gene for tumor therapy

Liu L, Liu X, Xu Q, Wu P, Zuo X, Zhang J, Deng H, Wu Z, Ji A

International Journal of Nanomedicine 2014, 9:3509-3526

Published Date: 29 July 2014

Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016)

Ueno T, Endo K, Hori K, Ozaki N, Tsuji A, Kondo S, Wakisaka N, Murono S, Kataoka K, Kato Y, Yoshizaki T

International Journal of Nanomedicine 2014, 9:3005-3012

Published Date: 19 June 2014

Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture

Cheng BR, He ZB, Zhao LB, Fang Y, Chen YY, He RX, Chen FF, Song HB, Deng YL, Zhao XZ, Xiong B

International Journal of Nanomedicine 2014, 9:2569-2580

Published Date: 22 May 2014