Back to Journals » Journal of Inflammation Research » Volume 9

Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment

Authors Zachar L, Bačenková D, Rosocha J

Received 9 September 2016

Accepted for publication 29 October 2016

Published 15 December 2016 Volume 2016:9 Pages 231—240

DOI https://doi.org/10.2147/JIR.S121994

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Akshita Wason

Peer reviewer comments 2

Editor who approved publication: Dr Ning Quan


Lukáš Zachar, Darina Bačenková, Ján Rosocha

Associated Tissue Bank of Faculty of Medicine of P. J. Šafárik University and University Hospital of L. Pasteur, Košice, Slovak Republic

Abstract: Human mesenchymal stem cells (MSCs) are considered to be a promising source of cells in regenerative medicine. They have large potential to differentiate into various tissue-specific populations and may be isolated from diverse tissues in desired quantities. As cells of potential autologous origin, they allow recipients to avoid the alloantigen responses. They also have the ability to create immunomodulatory microenvironment, and thus help to minimize organ damage caused by the inflammation and cells activated by the immune system. Our knowledge about the reparative, regenerative, and immunomodulatory properties of MSCs is advancing. At present, there is a very comprehensible idea on how MSCs affect the immune system, particularly in relation to the tissue and organ damage on immunological basis. Hitherto a number of effective mechanisms have been described by which MSCs influence the immune responses. These mechanisms include a secretion of soluble bioactive agents, an induction of regulatory T cells, modulation of tolerogenic dendritic cells, as well as induction of anergy and apoptosis. MSCs are thus able to influence both innate and adaptive immune responses. Soluble factors that are released into local microenvironment with their subsequent paracrine effects are keys to the activation. As a result, activated MSCs contribute to the restoration of damaged tissues or organs through various mechanisms facilitating reparative and regenerative processes as well as through immunomodulation itself and differentiation into the cells of the target tissue.

Keywords: stem cells, migration, bioactive factors, immunomodulatory microenvironment, regulatory T cells, tissue regeneration
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]