Back to Journals » International Journal of Nanomedicine » Volume 7

Acoustic cardiac signals analysis: a Kalman filter–based approach

Authors Sh Hussain S, Hadrina S, Tan, Ting C, Mohd Noor A, Pipatsart S, Ali J, Yupapin P

Received 27 March 2012

Accepted for publication 25 April 2012

Published 11 June 2012 Volume 2012:7 Pages 2873—2881

DOI https://doi.org/10.2147/IJN.S32315

Review by Single-blind

Peer reviewer comments 2


Sheik Hussain Salleh,1 Hadrina Sheik Hussain,2 Tan Tian Swee,2 Chee-Ming Ting,2 Alias Mohd Noor,2 Surasak Pipatsart,3 Jalil Ali,4 Preecha P Yupapin3

1Department of Biomedical Instrumentation and Signal Processing, Universiti Teknologi Malaysia, Skudai, Malaysia; 2Centre for Biomedical Engineering Transportation Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3Nanoscale Science and Engineering Research Alliance, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 4Institute of Advanced Photonics Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Abstract: Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss–Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.

Keywords: heart sound, murmurs, ECG, Kalman filters, acoustic cardiac signals

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]