Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Accessing to the minor proteome of red blood cells through the influence of the nanoparticle surface properties on the corona composition

Authors Zaccaria A, Roux-Dalvai F, Bouamrani A, Mombrun A, Mossuz P, Monsarrat B, Berger F

Received 2 July 2014

Accepted for publication 11 October 2014

Published 9 March 2015 Volume 2015:10(1) Pages 1869—1883

DOI https://doi.org/10.2147/IJN.S70503

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Dr Thomas J Webster

Affif Zaccaria,1,* Florence Roux-Dalvai,2,3,* Ali Bouamrani,1 Adrien Mombrun,1 Pascal Mossuz,4 Bernard Monsarrat,2,3 François Berger1

1Clinatec CEA-LETI, Grenoble, 2CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 3Université de Toulouse, UPS, IPBS, Toulouse, 4TIMC-Therex UMR 5525 CNRS, UJF, CHU Grenoble, Grenoble, France

*These authors contributed equally to this work

Abstract: Nanoparticle (NP)–protein interactions in complex samples have not yet been clearly understood. Nevertheless, several studies demonstrated that NP’s physicochemical features significantly impact on the protein corona composition. Taking advantage of the NP potential to harvest different subsets of proteins, we assessed for the first time the capacity of three kinds of superparamagnetic NPs to highlight the erythrocyte minor proteome. Using both qualitative and quantitative proteomics approaches, nano-liquid chromatography–tandem mass spectrometry allowed the identification of 893 different proteins, confirming the reproducible capacity of NPs to increase the number of identified proteins, through a reduction of the sample concentration range and the capture of specific proteins on the three different surfaces. These NP-specific protein signatures revealed significant differences in their isoelectric point and molecular weight. Moreover, this NP strategy offered a deeper access to the erythrocyte proteome highlighting several signaling pathways implicated in important erythrocyte functions. The automated potentiality, the reproducibility, and the low-consuming sample demonstrate the strong compatibility of our strategy for large-scale clinical studies and may become a standardized sample preparation in future erythrocyte-associated proteomics studies.

Keywords: nanoparticles, red blood cells, mass spectrometry, quantitative proteomics, protein corona, minor proteome
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera

Marslin G, Selvakesavan RK, Franklin G, Sarmento B, Dias ACP

International Journal of Nanomedicine 2015, 10:5955-5963

Published Date: 22 September 2015

Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles

Wang LS, Wang CY, Yang CH, Hsieh CL, Chen SY, Shen CY, Wang JJ, Huang KS

International Journal of Nanomedicine 2015, 10:2685-2696

Published Date: 1 April 2015

Magnetic thermoablation stimuli alter BCL2 and FGF-R1 but not HSP70 expression profiles in BT474 breast tumors

Stapf M, Pömpner N, Kettering M, Hilger I

International Journal of Nanomedicine 2015, 10:1931-1939

Published Date: 10 March 2015

2'-(2-bromohexadecanoyl)-paclitaxel conjugate nanoparticles for the treatment of non-small cell lung cancer in an orthotopic xenograft mouse model

Peng L, Schorzman AN, Ma P, Madden AJ, Zamboni WC, Benhabbour SR, Mumper RJ

International Journal of Nanomedicine 2014, 9:3601-3610

Published Date: 30 July 2014

Multifunctional materials for bone cancer treatment

Marques C, Ferreira JMF, Andronescu E, Ficai D, Sonmez M, Ficai A

International Journal of Nanomedicine 2014, 9:2713-2725

Published Date: 28 May 2014