Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array

Authors Zhao Q, Duan R, Yuan J, Quan Y, Yang H, Xi M

Received 30 November 2013

Accepted for publication 1 January 2014

Published 22 February 2014 Volume 2014:9(1) Pages 1097—1104

DOI https://doi.org/10.2147/IJN.S58499

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Qianying Zhao,1 Ruiqi Duan,1 Jialing Yuan,1 Yi Quan,1 Huan Yang,2 Mingrong Xi1

1Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, 2State Key Laboratory of Optical Technologies for Micro-fabrication, Institute of Optics and Electronics, Chinese Academy of Science, Chengdu, Sichuan, People's Republic of China

Abstract: Squamous cell carcinoma antigen (SCCa), as a tumor biomarker, plays an important role in adjuvant diagnosis, treatment evaluation, and prognosis prediction for cervical cancer patients. Localized surface plasmon resonance (LSPR) technique based on noble metal nanoparticles bypasses the disadvantages of traditional testing strategies, in terms of free-labeling, short assay time, good sensitivity, and selectivity. Herein, we develop a novel and reusable LSPR biosensor for the detection of SCCa. First, a triangle-shaped silver nanoparticle array was fabricated using the nanosphere lithography method. Next, we investigated and verified the feasibility of amino coupling method using 11-mercaptoundecanoic acid (MUA) to form a functionalized chip surface with monoclonal anti-SCCa antibodies on the silver nanoparticles for distinct detection of SCCa. Different concentrations of SCCa were successfully tested in both buffer and human serum by the ultrasensitive and specific LSPR system, with a linear quantitative detection range of 0.1–1,000 pM under optimal conditions. With appropriate regeneration solution, for example 50 mM glycine-HCl (pH 2.0), the LSPR biosensor featured effective fabrication reproducibility, which reduced both production cost and testing time. Our study represents the first application of the LSPR biosensor in cervical cancer, and demonstrates that the rapid, simple, and reusable nanochip can serve as a potential alternative for clinical serological diagnosis of SCCa in cervical cancer patients.

Keywords: localized surface plasmon resonance, nanotechnology, biosensor, cervical cancer biomarker, squamous cell carcinoma antigen

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]