Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array

Authors Zhao Q, Duan R, Yuan J, Quan Y, Yang H, Xi M

Received 30 November 2013

Accepted for publication 1 January 2014

Published 22 February 2014 Volume 2014:9(1) Pages 1097—1104


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Qianying Zhao,1 Ruiqi Duan,1 Jialing Yuan,1 Yi Quan,1 Huan Yang,2 Mingrong Xi1

1Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, 2State Key Laboratory of Optical Technologies for Micro-fabrication, Institute of Optics and Electronics, Chinese Academy of Science, Chengdu, Sichuan, People's Republic of China

Abstract: Squamous cell carcinoma antigen (SCCa), as a tumor biomarker, plays an important role in adjuvant diagnosis, treatment evaluation, and prognosis prediction for cervical cancer patients. Localized surface plasmon resonance (LSPR) technique based on noble metal nanoparticles bypasses the disadvantages of traditional testing strategies, in terms of free-labeling, short assay time, good sensitivity, and selectivity. Herein, we develop a novel and reusable LSPR biosensor for the detection of SCCa. First, a triangle-shaped silver nanoparticle array was fabricated using the nanosphere lithography method. Next, we investigated and verified the feasibility of amino coupling method using 11-mercaptoundecanoic acid (MUA) to form a functionalized chip surface with monoclonal anti-SCCa antibodies on the silver nanoparticles for distinct detection of SCCa. Different concentrations of SCCa were successfully tested in both buffer and human serum by the ultrasensitive and specific LSPR system, with a linear quantitative detection range of 0.1–1,000 pM under optimal conditions. With appropriate regeneration solution, for example 50 mM glycine-HCl (pH 2.0), the LSPR biosensor featured effective fabrication reproducibility, which reduced both production cost and testing time. Our study represents the first application of the LSPR biosensor in cervical cancer, and demonstrates that the rapid, simple, and reusable nanochip can serve as a potential alternative for clinical serological diagnosis of SCCa in cervical cancer patients.

Keywords: localized surface plasmon resonance, nanotechnology, biosensor, cervical cancer biomarker, squamous cell carcinoma antigen

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

In situ precipitation: a novel approach for preparation of iron-oxide magnetoliposomes

Xia S, Li P, Chen Q, Armah M, Ying X, Wu J, Lai J

International Journal of Nanomedicine 2014, 9:2607-2617

Published Date: 23 May 2014

Nanoparticles for multimodal in vivo imaging in nanomedicine

Key J, Leary JF

International Journal of Nanomedicine 2014, 9:711-726

Published Date: 29 January 2014

Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

Cheng M, Chen H, Wang Y, Xu H, He B, Han J, Zhang Z

International Journal of Nanomedicine 2014, 9:695-710

Published Date: 24 January 2014

Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines – in vitro studies

Legut M, Lipka D, Filipczak N, Piwoni A, Kozubek A, Gubernator J

International Journal of Nanomedicine 2014, 9:653-668

Published Date: 23 January 2014

Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line

Rahman HS, Rasedee A, Abdul AB, Zeenathul NA, Othman HH, Yeap SK, How CW, Wan Nor Hafiza WAG

International Journal of Nanomedicine 2014, 9:527-538

Published Date: 16 January 2014

Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF

International Journal of Nanomedicine 2012, 7:5351-5360

Published Date: 8 October 2012

Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells

Zhang WJ, Li ZH, Liu Y, Ye DX, Li JH, Xu LY, Wei B, Zhang XL, Liu XY, Jiang XQ

International Journal of Nanomedicine 2012, 7:4459-4472

Published Date: 13 August 2012

Nanotoxicology and nanoparticle safety in biomedical designs

Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari HR, Rad HG

International Journal of Nanomedicine 2011, 6:1117-1127

Published Date: 31 May 2011