Back to Journals » International Journal of Nanomedicine » Volume 14

A multifunctional supramolecular vesicle based on complex of cystamine dihydrochloride capped pillar[5]arene and galactose derivative for targeted drug delivery

Authors Lu Y, Hou C, Ren J, Yang K, Chang Y, Pei Y, Dong H, Pei Z

Received 18 October 2018

Accepted for publication 9 February 2019

Published 14 May 2019 Volume 2019:14 Pages 3525—3532

DOI https://doi.org/10.2147/IJN.S191256

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Linlin Sun


Yuchao Lu, 1,2 Chenxi Hou, 1 Jingli Ren, 1 Kui Yang, 1 Yincheng Chang, 1 Yuxin Pei, 1 Hai Dong, 3 Zhichao Pei 1
1Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China; 2Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People’s Republic of China; 3School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People’s Republic of China
 
*These authors contributed equally to this work 


Background: Supramolecular vesicles are a novel class of nanocarriers that have great potential in biomedicine.
Methods: A multifunctional supramolecular vesicle (CAAP5G) based on the complex of CAAP5 and galactose derivative (G) assembled via host-guest interaction was constructed.
Results: Using Human embryonic kidney T (293T) cells as experimental models, the cytotoxic effects of CAAP5G was investigated to 0– 50 μmol/L for 24 h. Notably, the CAAP5G vesicles revealed low-toxicity to 293T cells, it was critical to designing drug nano-carriers. Simultaneously, we have evaluated doxorubicin hydrochloride (DOX)-loaded CAAP5G vesicles anticancer efficiency, where DOX-loaded CAAP5G vesicles and free DOX incubated with Human hepatocellular carcinoma cancer cell (HpeG2 cells) and 293T cells for 24 h, 48 h, 72 h. It turned out that CAAP5G vesicles encapsulated anticancer drug (DOX) could decrease DOX side-effect on 293T cells and increase DOX anticancer efficiency. More importantly, the cysteamine as an adjuvant chemotherapy drug was released from CAAP5G vesicles in HepG2 cells where a higher GSH concentration exists. The adjuvant chemotherapy efficiency was evaluated, where free DOX and DOX-loaded CAAP5G vesicles incubated with DOX-resistance HepG2 cells (HepG2-ADR cells) for 24, 48, 72 h, respectively.
Conclusion: The results revealed that the DOX encapsulated by CAAP5G vesicles could enhance the cytotoxicity of DOX and provide insights for designing advanced nano-carriers toward adjuvant chemotherapies.

Keywords: supramolecular vesicles, cysteamine, responsive, adjuvant chemotherapies, targeted drug delivery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]