Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

A hybrid substratum for primary hepatocyte culture that enhances hepatic functionality with low serum dependency

Authors Meng Q, Tao C, Qiu Z, Akaike T, Cui F, Wang X

Received 27 September 2014

Accepted for publication 26 January 2015

Published 23 March 2015 Volume 2015:10(1) Pages 2313—2323


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Qingyuan Meng,1–3 Chunsheng Tao,1,4 Zhiye Qiu,1 Toshihiro Akaike,3 Fuzhai Cui,1 Xiumei Wang1

1School of Materials Science and Engineering, Tsinghua University, Beijing, People’s Republic of China; 2State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China; 3Biomaterials Center for Regenerative Medical Engineering, Ibaraki, Japan; 4The 401 Hospital of Chinese People’s Liberation Army, Qingdao, People’s Republic of China

Abstract: Cell culture systems have proven to be crucial for the in vitro maintenance of primary hepatocytes and the preservation of hepatic functional expression at a high level. A poly-(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) matrix can recognize cells and promote liver function in a spheroid structure because of a specific galactose–asialoglycoprotein receptor interaction. Meanwhile, a fusion protein, E-cadherin-Fc, when incubated with various cells, has shown an enhancing effect on cellular viability and metabolism. Therefore, a hybrid substratum was developed for biomedical applications by using both of these materials to combine their advantages for primary hepatocyte cultures. The isolated cells showed a monolayer aggregate morphology on the coimmobilized surface and displayed higher functional expression than cells on traditional matrices. Furthermore, the hybrid system, in which the highest levels of cell adhesion and hepatocellular metabolism were achieved with the addition of 1% fetal bovine serum, showed a lower serum dependency than the collagen/gelatin-coated surface. Accordingly, this substrate may attenuate the negative effects of serum and further contribute to establishing a defined culture system for primary hepatocytes.

Keywords: mouse primary hepatocytes, E-cadherin-Fc, PVLA, serum dependency, hybrid system

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model

Boechat AL, Oliveira CP, Tarragô AM, Costa AG, Malheiro A, Guterres SS, Pohlmann AR

International Journal of Nanomedicine 2015, 10:6603-6614

Published Date: 22 October 2015

Amalgamation of complex iron(III) ions and iron nanoclusters with MWCNTs as a route to potential T2 MRI contrast agents

Kuźnik N, Tomczyk MM, Wyskocka M, Przypis L, Herman AP, Jędrysiak R, Koziol KK, Boncel S

International Journal of Nanomedicine 2015, 10:3581-3591

Published Date: 14 May 2015

Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast

Ortega FG, Fernández-Baldo MA, Fernández JG, Serrano MJ, Sanz MI, Diaz-Mochón JJ, Lorente JA, Raba J

International Journal of Nanomedicine 2015, 10:2021-2031

Published Date: 16 March 2015

Therapeutic antitumor efficacy of tumor-derived autophagosome (DRibble) vaccine on head and neck cancer

Su H, Luo Q, Xie H, Huang XF, Ni YH, Mou YB, Hu QG

International Journal of Nanomedicine 2015, 10:1921-1930

Published Date: 10 March 2015

Self-assembled micelles of amphiphilic poly(L-phenylalanine)-b-poly(L-serine) polypeptides for tumor-targeted delivery

Zhao ZM, Wang Y, Han J, Wang KL, Yang D, Yang YH, Du Q, Song YJ, Yin XX

International Journal of Nanomedicine 2014, 9:5849-5862

Published Date: 12 December 2014

Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist – an initial in vitro study

Skopalik J, Polakova K, Havrdova M, Justan I, Magro M, Milde D, Knopfova L, Smarda J, Polakova H, Gabrielova E, Vianello F, Michalek J, Zboril R

International Journal of Nanomedicine 2014, 9:5355-5372

Published Date: 20 November 2014

A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

Green HN, Crockett SD, Martyshkin DV, Singh KP, Grizzle WE, Rosenthal EL, Mirov SB

International Journal of Nanomedicine 2014, 9:5093-5102

Published Date: 5 November 2014

Green synthesis of gold nanoparticles using plant extracts as reducing agents

Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y

International Journal of Nanomedicine 2014, 9:4007-4021

Published Date: 20 August 2014

Calcifying nanoparticles promote mineralization in vascular smooth muscle cells: implications for atherosclerosis

Hunter LW, Charlesworth JE, Yu S, Lieske JC, Miller VM

International Journal of Nanomedicine 2014, 9:2689-2698

Published Date: 27 May 2014