Back to Journals » International Journal of Nanomedicine » Volume 14

A 3D-Printed Multi-Chamber Device Allows Culturing Cells On Buckypapers Coated With PAMAM Dendrimer And Obtain Innovative Materials For Biomedical Applications

Authors Paolini A, Battafarano G, D'Oria V, Mura F, Sennato S, Mussi V, Risoluti R, Materazzi S, Del Fattore A, Masotti A

Received 26 July 2019

Accepted for publication 8 October 2019

Published 29 November 2019 Volume 2019:14 Pages 9295—9306

DOI https://doi.org/10.2147/IJN.S224819

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J. Webster


Alessandro Paolini,1 Giulia Battafarano,1 Valentina D’Oria,1 Francesco Mura,2 Simona Sennato,3 Valentina Mussi,4 Roberta Risoluti,5 Stefano Materazzi,5 Andrea Del Fattore,1 Andrea Masotti1

1Bambino Gesù Children’s Hospital, IRCCS, Research Laboratories, Rome 00146, Italy; 2Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome, Rome 00185, Italy; 3CNR-ISC UOS Sapienza and Physics Department, Sapienza University of Rome, Rome 00185, Italy; 4National Research Council, Institute for Microelectronics and Microsystems IMM-CNR, Roma 00133, Italy; 5Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy

Correspondence: Andrea Masotti
Bambino Gesù Children’s Hospital, IRCCS, Research Laboratories, Gene Expression-Microarrays Laboratory, Viale di San Paolo 15, Rome 00146, Italy
Tel +39-06-68592650
Fax +39-0668592904
Email andrea.masotti@opbg.net

Background: The advent of 3D printing technology allowed the realization of custom devices that can be used not only in the everyday life but also in the nanotechnology and biomedical fields. In nanotechnology, the use of bi-dimensional nanostructures based on carbon nanotubes, generally referred as buckypapers, have received considerable attention for their versatility and potential application in many biomedical fields. Unfortunately, buckypapers are extremely hydrophobic and cannot be used in aqueous media to culture cells.
Methods: A polymeric device able to accommodate buckypapers and facilitate cell growth was fabricated by using 3D printing technology. We imparted hydrophilicity to buckypapers by coating them with polyamidoamine (PAMAM) dendrimers.
Results: We found that by using novel techniques such as polymer coating the buckypaper hydrophilicity increased, whereas the use of 3D printing technology allowed us to obtain custom devices that have been used to culture cells on buckypapers for many days. We characterized in details the morphology of these structures and studied for the first time the kinetic of cell proliferation. We found that these scaffolds, if properly functionalized, are suitable materials to grow cells for long time and potentially employable in the biomedical field.
Conclusion: Although these materials are cytotoxic under certain circumstances, we have found a suitable coating and specific experimental conditions that encourage using buckypapers as novel scaffolds for cell growth and for potential applications in tissue repair and regeneration.

Keywords: 3D printing, buckypaper, PAMAM dendrimer, cell proliferation, tissue regeneration, transfection

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]